Torch-mutable-modules - Use in-place and assignment operations on PyTorch module parameters with support for autograd

Overview

Torch Mutable Modules

Use in-place and assignment operations on PyTorch module parameters with support for autograd.

Publish to PyPI Run tests PyPI version Number of downloads from PyPI per month Python version support Code Style: Black

Why does this exist?

PyTorch does not allow in-place operations on module parameters (usually desirable):

linear_layer = torch.nn.Linear(1, 1)
linear_layer.weight.data += 69
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# Valid, but will NOT store grad_fn=<AddBackward0>
linear_layer.weight += 420
# ^^^^^^^^^^^^^^^^^^^^^^^^
# RuntimeError: a leaf Variable that requires grad is being used in an in-place operation.

In some cases, however, it is useful to be able to modify module parameters in-place. For example, if we have a neural network (net_1) that predicts the parameter values to another neural network (net_2), we need to be able to modify the weights of net_2 in-place and backpropagate the gradients to net_1.

# create a parameter predictor network (net_1)
net_1 = torch.nn.Linear(1, 2)

# predict the weights and biases of net_2 using net_1
p_weight_and_bias = net_1(input_0).unsqueeze(2)
p_weight, p_bias = p_weight_and_bias[:, 0], p_weight_and_bias[:, 1]

# create a mutable network (net_2)
net_2 = to_mutable_module(torch.nn.Linear(1, 1))

# hot-swap the weights and biases of net_2 with the predicted values
net_2.weight = p_weight
net_2.bias = p_bias

# compute the output and backpropagate the gradients to net_1
output = net_2(input_1)
loss = criterion(output, label)
loss.backward()
optimizer.step()

This library provides a way to easily convert PyTorch modules into mutable modules with the to_mutable_module function.

Installation

You can install torch-mutable-modules from PyPI.

pip install torch-mutable-modules

To upgrade an existing installation of torch-mutable-modules, use the following command:

pip install --upgrade --no-cache-dir torch-mutable-modules

Importing

You can use wildcard imports or import specific functions directly:

# import all functions
from torch_mutable_modules import *

# ... or import the function manually
from torch_mutable_modules import to_mutable_module

Usage

To convert an existing PyTorch module into a mutable module, use the to_mutable_module function:

converted_module = to_mutable_module(
    torch.nn.Linear(1, 1)
) # type of converted_module is still torch.nn.Linear

converted_module.weight *= 0
convreted_module.weight += 69
convreted_module.weight # tensor([[69.]], grad_fn=<AddBackward0>)

You can also declare your own PyTorch module classes as mutable, and all child modules will be recursively converted into mutable modules:

class MyModule(nn.Module):
    def __init__(self):
        super().__init__()
        self.linear = nn.Linear(1, 1)
    
    def forward(self, x):
        return self.linear(x)

my_module = to_mutable_module(MyModule())
my_module.linear.weight *= 0
my_module.linear.weight += 69
my_module.linear.weight # tensor([[69.]], grad_fn=<AddBackward0>)

Usage with CUDA

To create a module on the GPU, simply pass a PyTorch module that is already on the GPU to the to_mutable_module function:

converted_module = to_mutable_module(
    torch.nn.Linear(1, 1).cuda()
) # converted_module is now a mutable module on the GPU

Moving a module to the GPU with .to() and .cuda() after instanciation is NOT supported. Instead, hot-swap the module parameter tensors with their CUDA counterparts.

# both of these are valid
converted_module.weight = converted_module.weight.cuda()
converted_module.bias = converted_module.bias.to("cuda")

Detailed examples

Please check out example.py to see more detailed example usages of the to_mutable_module function.

Contributing

Please feel free to submit issues or pull requests!

You might also like...
A machine learning library for spiking neural networks. Supports training with both torch and jax pipelines, and deployment to neuromorphic hardware.
A machine learning library for spiking neural networks. Supports training with both torch and jax pipelines, and deployment to neuromorphic hardware.

Rockpool Rockpool is a Python package for developing signal processing applications with spiking neural networks. Rockpool allows you to build network

Implements Stacked-RNN in numpy and torch with manual forward and backward functions

Recurrent Neural Networks Implements simple recurrent network and a stacked recurrent network in numpy and torch respectively. Both flavours implement

A torch.Tensor-like DataFrame library supporting multiple execution runtimes and Arrow as a common memory format

TorchArrow (Warning: Unstable Prototype) This is a prototype library currently under heavy development. It does not currently have stable releases, an

A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

 MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files
MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files

implementation of MM1 and MMC Queue on randomly generated data and evaluate simulation results then compare with analytical results and draw a plot curve for them, simulate some integrals and compare results and run monte carlo algorithm with them

Torch-based tool for quantizing high-dimensional vectors using additive codebooks

Trainable multi-codebook quantization This repository implements a utility for use with PyTorch, and ideally GPUs, for training an efficient quantizer

Torch implementation of
Torch implementation of "Enhanced Deep Residual Networks for Single Image Super-Resolution"

NTIRE2017 Super-resolution Challenge: SNU_CVLab Introduction This is our project repository for CVPR 2017 Workshop (2nd NTIRE). We, Team SNU_CVLab, (B

Automatic number plate recognition using tech:  Yolo, OCR, Scene text detection, scene text recognation, flask, torch
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Releases(v1.1.2)
Owner
Kento Nishi
17-year-old programmer at Lynbrook High School, with strong interests in AI/Machine Learning. Open source developer and researcher at the Four Eyes Lab.
Kento Nishi
Detection of drones using their thermal signatures from thermal camera through YOLO-V3 based CNN with modifications to encapsulate drone motion

Drone Detection using Thermal Signature This repository highlights the work for night-time drone detection using a using an Optris PI Lightweight ther

Chong Yu Quan 6 Dec 31, 2022
Convert BART models to ONNX with quantization. 3X reduction in size, and upto 3X boost in inference speed

fast-Bart Reduction of BART model size by 3X, and boost in inference speed up to 3X BART implementation of the fastT5 library (https://github.com/Ki6a

Siddharth Sharma 19 Dec 09, 2022
This repository implements variational graph auto encoder by Thomas Kipf.

Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to

DaehanKim 215 Jan 02, 2023
Multi-Output Gaussian Process Toolkit

Multi-Output Gaussian Process Toolkit Paper - API Documentation - Tutorials & Examples The Multi-Output Gaussian Process Toolkit is a Python toolkit f

GAMES 113 Nov 25, 2022
"SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image", Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, Zhangyang Wang

SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image [Paper] [Website] Pipeline Code Environment pip install -r requirements

VITA 250 Jan 05, 2023
CTF challenges from redpwnCTF 2021

redpwnCTF 2021 Challenges This repository contains challenges from redpwnCTF 2021 in the rCDS format; challenge information is in the challenge.yaml f

redpwn 27 Dec 07, 2022
Interpolation-based reduced-order models

Interpolation-reduced-order-models Interpolation-based reduced-order models High-fidelity computational fluid dynamics (CFD) solutions are time consum

Donovan Blais 1 Jan 10, 2022
Extreme Rotation Estimation using Dense Correlation Volumes

Extreme Rotation Estimation using Dense Correlation Volumes This repository contains a PyTorch implementation of the paper: Extreme Rotation Estimatio

Ruojin Cai 29 Nov 18, 2022
Official Implementation of SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations

Official Implementation of SimIPU SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations Since

Zhyever 37 Dec 01, 2022
QuanTaichi evaluation suite

QuanTaichi: A Compiler for Quantized Simulations (SIGGRAPH 2021) Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang Dai, W

Taichi Developers 120 Jan 04, 2023
Cortex-compatible model server for Python and TensorFlow

Nucleus model server Nucleus is a model server for TensorFlow and generic Python models. It is compatible with Cortex clusters, Kubernetes clusters, a

Cortex Labs 14 Nov 27, 2022
Ian Covert 130 Jan 01, 2023
Code for "Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue Generation". [AAAI 2021]

Graph Evolving Meta-Learning for Low-resource Medical Dialogue Generation Code to be further cleaned... This repo contains the code of the following p

Shuai Lin 29 Nov 01, 2022
OoD Minimum Anomaly Score GAN - Code for the Paper 'OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary'

OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary Out-of-Distribution Minimum Anomaly Score GAN (OMASGAN) C

- 8 Sep 27, 2022
Code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition"

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
StyleGAN2-ADA-training-jupyter - Training custom datasets in styleGAN2-ADA by NVIDIA using Jupyter

styleGAN2-ADA-training-jupyter Training custom datasets in styleGAN2-ADA on Jupyter Official StyleGAN2-ADA by NIVIDIA Paper Training Generative Advers

Mang Su Hyun 2 Feb 24, 2022
[CVPR 2020] Local Class-Specific and Global Image-Level Generative Adversarial Networks for Semantic-Guided Scene Generation

Contents Local and Global GAN Cross-View Image Translation Semantic Image Synthesis Acknowledgments Related Projects Citation Contributions Collaborat

Hao Tang 131 Dec 07, 2022
Learned Initializations for Optimizing Coordinate-Based Neural Representations

Learned Initializations for Optimizing Coordinate-Based Neural Representations Project Page | Paper Matthew Tancik*1, Ben Mildenhall*1, Terrance Wang1

Matthew Tancik 127 Jan 03, 2023
Аналитика доходности инвестиционного портфеля в Тинькофф брокере

Аналитика доходности инвестиционного портфеля Тиньков Видео на YouTube Для работы скрипта нужно установить три переменных окружения: export TINKOFF_TO

Alexey Goloburdin 64 Dec 17, 2022
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022