[ICML 2021] “ Self-Damaging Contrastive Learning”, Ziyu Jiang, Tianlong Chen, Bobak Mortazavi, Zhangyang Wang

Related tags

Deep LearningSDCLR
Overview

Self-Damaging Contrastive Learning

Introduction

The recent breakthrough achieved by contrastive learning accelerates the pace for deploying unsupervised training on real-world data applications. However, unlabeled data in reality is commonly imbalanced and shows a long-tail distribution, and it is unclear how robustly the latest contrastive learning methods could perform in the practical scenario. This paper proposes to explicitly tackle this challenge, via a principled framework called Self-Damaging Contrastive Learning (SDCLR), to automatically balance the representation learning without knowing the classes. Our main inspiration is drawn from the recent finding that deep models have difficult-to-memorize samples, and those may be exposed through network pruning [1]. It is further natural to hypothesize that long-tail samples are also tougher for the model to learn well due to insufficient examples. Hence, the key innovation in SDCLR is to create a dynamic self-competitor model to contrast with the target model, which is a pruned version of the latter. During training, contrasting the two models will lead to adaptive online mining of the most easily forgotten samples for the current target model, and implicitly emphasize them more in the contrastive loss. Extensive experiments across multiple datasets and imbalance settings show that SDCLR significantly improves not only overall accuracies but also balancedness, in terms of linear evaluation on the full-shot and few-shot settings.

[1] Hooker, Sara, et al. "What Do Compressed Deep Neural Networks Forget?." arXiv preprint arXiv:1911.05248 (2019).

Method

pipeline The overview of the proposed SDCLR framework. Built on top of simCLR pipeline by default, the uniqueness of SDCLR lies in its two different network branches: one is the target model to be trained, and the other "self-competitor" model that is pruned from the former online. The two branches share weights for their non-pruned parameters. Either branch has its independent batch normalization layers. Since the self-competitor is always obtained and updated from the latest target model, the two branches will co-evolve during training. Their contrasting will implicitly give more weights on long-tail samples.

Environment

Requirements:

pytorch 1.7.1 
opencv-python
scikit-learn 
matplotlib

Recommend installation cmds (linux)

conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.2 -c pytorch # change cuda version according to hardware
pip install opencv-python
conda install -c conda-forge scikit-learn matplotlib

Details about and Imagenet-100-LT Imagenet-LT-exp

Imagenet-100-LT sampling list

Imagenet-LT-exp sampling list

Pretrained models downloading

CIFAR10: pretraining, fine-tuning

CIFAR100: pretraining, fine-tuning

Imagenet100/Imagenet: pretraining, fine-tuning

Train and evaluate pretrained models

Before all

chmod +x  cmds/shell_scrips/*

CIFAR10

SimCLR on balanced training datasets

# pre-train and finetune
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-10-LT.sh -g 1 -w 8 --split split${split_num}_D_b
done

# evaluate pretrained model (after download and unzip the pretrained model)
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-10-LT.sh -g 1 -w 8 --split split${split_num}_D_b  --only_finetuning True  --test_only True
done

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset cifar10
# few shot
python exp_analyse.py --dataset cifar10 --fewShot

SimCLR on long tail training datasets

# pre-train and finetune
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-10-LT.sh -g 1 -w 8 --split split${split_num}_D_i
done

# evaluate pretrained model (after download and unzip the pretrained model)
for split_num in 1 2 3 4 5 
do
./cmds/shell_scrips/cifar-10-LT.sh -g 1 -w 8 --split split${split_num}_D_i --only_finetuning True --test_only True
done

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset cifar10 --LT
# few shot
python exp_analyse.py --dataset cifar10 --LT --fewShot

SDCLR on long tail training datasets

# pre-train and finetune
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-10-LT.sh -g 1 -w 8 --split split${split_num}_D_i --prune True --prune_percent 0.9 --prune_dual_bn True
done

# evaluate pretrained model (after download and unzip the pretrained model)
for split_num in 1 2 3 4 5 
do
./cmds/shell_scrips/cifar-10-LT.sh -g 1 -w 8 --split split${split_num}_D_i --prune True --prune_percent 0.9 --prune_dual_bn True --only_finetuning True --test_only True
done

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset cifar10 --LT --prune
# few shot
python exp_analyse.py --dataset cifar10 --LT --prune --fewShot

CIFAR100

SimCLR on balanced training datasets

# pre-train and finetune
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-100-LT.sh -g 1 -p 4867 -w 8 --split cifar100_split${split_num}_D_b
done

# evaluate pretrained model (after download and unzip the pretrained model)
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-100-LT.sh -g 1 -p 4867 -w 8 --split cifar100_split${split_num}_D_b --only_finetuning True --test_only True
done

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset cifar100
# few shot
python exp_analyse.py --dataset cifar100 --fewShot

SimCLR on long tail training datasets

# pre-train and finetune
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-100-LT.sh -g 1 -p 4867 -w 8 --split cifar100_split${split_num}_D_i
done

# evaluate pretrained model (after download and unzip the pretrained model)
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-100-LT.sh -g 1 -p 4867 -w 8 --split cifar100_split${split_num}_D_i --only_finetuning True --test_only True
done

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset cifar100 --LT
# few shot
python exp_analyse.py --dataset cifar100 --LT --fewShot

SDCLR on long tail training datasets

# pre-train and finetune
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-100-LT.sh -g 1 -p 4867 -w 8 --split cifar100_split${split_num}_D_i --prune True --prune_percent 0.9 --prune_dual_bn True
done

# evaluate pretrained model (after download and unzip the pretrained model)
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-100-LT.sh -g 1 -p 4867 -w 8 --split cifar100_split${split_num}_D_i --prune True --prune_percent 0.9 --prune_dual_bn True --only_finetuning True --test_only True
done

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset cifar100 --LT --prune
# few shot
python exp_analyse.py --dataset cifar100 --LT --prune --fewShot

Imagenet-100-LT

SimCLR on balanced training datasets

# pre-train and finetune
./cmds/shell_scrips/imagenet-100-res50-LT.sh --data \path\to\imagenet -g 2 -p 4867 -w 10 --split imageNet_100_BL_train

# evaluate pretrained model (after download and unzip the pretrained model)
./cmds/shell_scrips/imagenet-100-res50-LT.sh --data \path\to\imagenet -g 2 -p 4867 -w 10 --split imageNet_100_BL_train --only_finetuning True --test_only True

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset imagenet100
# few shot
python exp_analyse.py --dataset imagenet100 --fewShot

SimCLR on long tail training datasets

# pre-train and finetune
./cmds/shell_scrips/imagenet-100-res50-LT.sh --data \path\to\imagenet -g 2 -p 4867 -w 10 --split imageNet_100_LT_train

# evaluate pretrained model (after download and unzip the pretrained model)
./cmds/shell_scrips/imagenet-100-res50-LT.sh --data \path\to\imagenet -g 2 -p 4860 -w 10 --split imageNet_100_LT_train --only_finetuning True --test_only True

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset imagenet100 --LT
# few shot
python exp_analyse.py --dataset imagenet100 --LT --fewShot

SDCLR on long tail training datasets

# pre-train and finetune
./cmds/shell_scrips/imagenet-100-res50-LT.sh --data \path\to\imagenet -g 2 -p 4867 -w 10 --split imageNet_100_LT_train --prune True --prune_percent 0.3 --prune_dual_bn True --temp 0.3

# evaluate pretrained model (after download and unzip the pretrained model)
./cmds/shell_scrips/imagenet-100-res50-LT.sh --data \path\to\imagenet -g 2 -p 4860 -w 10 --split imageNet_100_LT_train --prune True --prune_percent 0.3 --prune_dual_bn True --temp 0.3 --only_finetuning True --test_only True

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset imagenet100 --LT --prune
# few shot
python exp_analyse.py --dataset imagenet100 --LT --prune --fewShot

Imagenet-Exp-LT

SimCLR on balanced training datasets

# pre-train and finetune
./cmds/shell_scrips/imagenet-res50-LT.sh --data \path\to\imagenet -g 2 -p 4867 -w 10 --split imageNet_BL_exp_train

# evaluate pretrained model (after download and unzip the pretrained model)
./cmds/shell_scrips/imagenet-res50-LT.sh --data \path\to\imagenet -g 2 -p 4867 -w 10 --split imageNet_BL_exp_train --only_finetuning True --test_only True

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset imagenet
# few shot
python exp_analyse.py --dataset imagenet --fewShot

SimCLR on long tail training datasets

# pre-train and finetune
./cmds/shell_scrips/imagenet-res50-LT.sh --data \path\to\imagenet -g 2 -p 4867 -w 10 --split imageNet_LT_exp_train

# evaluate pretrained model (after download and unzip the pretrained model)
./cmds/shell_scrips/imagenet-res50-LT.sh --data \path\to\imagenet -g 2 -p 4868 -w 10 --split imageNet_LT_exp_train --only_finetuning True --test_only True

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset imagenet --LT
# few shot
python exp_analyse.py --dataset imagenet --LT --fewShot

Citation

@inproceedings{
jiang2021self,
title={Self-Damaging Contrastive Learning},
author={Jiang, Ziyu and Chen, Tianlong and Mortazavi, Bobak and Wang, Zhangyang},
booktitle={International Conference on Machine Learning},
year={2021}
}
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network.

face-mask-detection Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network. It contains 3 scr

amirsalar 13 Jan 18, 2022
FwordCTF 2021 Infrastructure and Source code of Web/Bash challenges

FwordCTF 2021 You can find here the source code of the challenges I wrote (Web and Bash) in FwordCTF 2021 and the source code of the platform with our

Kahla 5 Nov 25, 2022
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022
Code & Data for the Paper "Time Masking for Temporal Language Models", WSDM 2022

Time Masking for Temporal Language Models This repository provides a reference implementation of the paper: Time Masking for Temporal Language Models

Guy Rosin 12 Jan 06, 2023
A repository for generating stylized talking 3D and 3D face

style_avatar A repository for generating stylized talking 3D faces and 2D videos. This is the repository for paper Imitating Arbitrary Talking Style f

Haozhe Wu 191 Dec 22, 2022
Machine Learning Platform for Kubernetes

Reproduce, Automate, Scale your data science. Welcome to Polyaxon, a platform for building, training, and monitoring large scale deep learning applica

polyaxon 3.2k Dec 23, 2022
Riemann Noise Injection With PyTorch

Riemann Noise Injection - PyTorch A module for modeling GAN noise injection based on Riemann geometry, as described in Ruili Feng, Deli Zhao, and Zhen

2 May 27, 2022
Second-Order Neural ODE Optimizer, NeurIPS 2021 spotlight

Second-order Neural ODE Optimizer (NeurIPS 2021 Spotlight) [arXiv] ✔️ faster convergence in wall-clock time | ✔️ O(1) memory cost | ✔️ better test-tim

Guan-Horng Liu 39 Oct 22, 2022
Cognition-aware Cognate Detection

Cognition-aware Cognate Detection The repository which contains our code for our EACL 2021 paper titled, "Cognition-aware Cognate Detection". This wor

Prashant K. Sharma 1 Feb 01, 2022
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap

Photogrammetry & Robotics Bonn 40 Dec 01, 2022
Official PyTorch implementation of the Fishr regularization for out-of-distribution generalization

Fishr: Invariant Gradient Variances for Out-of-distribution Generalization Official PyTorch implementation of the Fishr regularization for out-of-dist

62 Dec 22, 2022
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021

Hypercorrelation Squeeze for Few-Shot Segmentation This is the implementation of the paper "Hypercorrelation Squeeze for Few-Shot Segmentation" by Juh

Juhong Min 165 Dec 28, 2022
Syllabus del curso IIC2115 - Programación como Herramienta para la Ingeniería 2022/I

IIC2115 - Programación como Herramienta para la Ingeniería Videos y tutoriales Tutorial CMD Tutorial Instalación Python y Jupyter Tutorial de git-GitH

21 Nov 09, 2022
Data-depth-inference - Data depth inference with python

Welcome! This readme will guide you through the use of the code in this reposito

Marco 3 Feb 08, 2022
Implementation for Homogeneous Unbalanced Regularized Optimal Transport

HUROT: An Homogeneous formulation of Unbalanced Regularized Optimal Transport. This repository provides code related to this preprint. This is an alph

Théo Lacombe 1 Feb 17, 2022
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022
Code for the ICASSP-2021 paper: Continuous Speech Separation with Conformer.

Continuous Speech Separation with Conformer Introduction We examine the use of the Conformer architecture for continuous speech separation. Conformer

Sanyuan Chen (陈三元) 81 Nov 28, 2022
An Api for Emotion recognition.

PLAYEMO Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs. Use Cases Is Python your langu

greek geek 2 Jul 16, 2022
PyTorch Code of "Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics"

Memory In Memory Networks It is based on the paper Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spati

Yang Li 12 May 30, 2022