Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN)

Related tags

Deep LearningMS-GCN
Overview

Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN)

This code implements the skeleton-based action segmentation MS-GCN model from Automated freezing of gait assessment with marker-based motion capture and multi-stage spatial-temporal graph convolutional neural networks and Skeleton-based action segmentation with multi-stage spatial-temporal graph convolutional neural networks, arXiv 2022 (in-review).

It was originally developed for freezing of gait (FOG) assessment on a proprietary dataset. Recently, we have also achieved high skeleton-based action segmentation performance on public datasets, e.g. HuGaDB, LARa, PKU-MMD v2, TUG.

Requirements

Tested on Ubuntu 16.04 and Pytorch 1.10.1. Models were trained on a Nvidia Tesla K80.

The c3d data preparation script requires Biomechanical-Toolkit. For installation instructions, please refer to the following issue.

Content

  • data_prep/ -- Data preparation scripts.
  • main.py -- Main script. I suggest working with this interactively with an IDE. Please provide the dataset and train/predict arguments, e.g. --dataset=fog_example --action=train.
  • batch_gen.py -- Batch loader.
  • label_eval.py -- Compute metrics and save prediction results.
  • model.py -- train/predict script.
  • models/ -- Location for saving the trained models.
  • models/ms_gcn.py -- The MS-GCN model.
  • models/net_utils/ -- Scripts to partition the graph for the various datasets. For more information about the partitioning, please refer to the section Graph representations. For more information about spatial-temporal graphs, please refer to ST-GCN.
  • data/ -- Location for the processed datasets. For more information, please refer to the 'FOG' example.
  • data/signals. -- Scripts for computing the feature representations. Used for datasets that provided spatial features per joint, e.g. FOG, TUG, and PKU-MMD v2. For more information, please refer to the section Graph representations.
  • results/ -- Location for saving the results.

Data

After processing the dataset (scripts are dataset specific), each processed dataset should be placed in the data folder. We provide an example for a motion capture dataset that is in c3d format. For this particular example, we extract 9 joints in 3D:

  • data_prep/read_frame.py -- Import the joints and action labels from the c3d and save both in a separate csv.
  • data_prep/gen_data/ -- Import the csv, construct the input, and save to npy for training. For more information about the input and label shape, please refer to the section Problem statement.

Please refer to the example in data/example/ for more information on how to structure the files for training/prediction.

Pre-trained models

Pre-trained models are provided for HuGaDB, PKU-MMD, and LARa. To reproduce the results from the paper:

  • The dataset should be downloaded from their respective repository.
  • See the "Data" section for more information on how to prepare the datasets.
  • Place the pre-trained models in models/, e.g. models/hugadb.
  • Ensure that the correct graph representation is chosen in ms_gcn.
  • Comment out features = get_features(features) in model (only for lara and hugadb).
  • Specify the correct sampling rate, e.g. downsampling factor of 4 for lara.
  • Run main to generate the per-sample predictions with proper arguments, e.g. --dataset=hugadb --action=predict.
  • Run label_eval with proper arguments, e.g. --dataset=hugadb.

Acknowledgements

The MS-GCN model and code are heavily based on ST-GCN and MS-TCN. We thank the authors for publicly releasing their code.

License

MIT

Owner
Benjamin Filtjens
PhD Student working towards at-home freezing of gait detection https://orcid.org/0000-0003-2609-6883
Benjamin Filtjens
This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR

This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR,which is an open-source toolbox based on PyTorch. The overall architecture will be sh

Jianquan Ye 82 Nov 17, 2022
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

DV Lab 137 Dec 14, 2022
ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.

Lightweight, efficient and stable implementations of deep reinforcement learning algorithms using PyTorch. 🔥

AI4Finance 2.5k Jan 08, 2023
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted

NU-Wave — Official PyTorch Implementation NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling Junhyeok Lee, Seungu Han @ MINDsLab Inc

MINDs Lab 242 Dec 23, 2022
Restricted Boltzmann Machines in Python.

How to Use First, initialize an RBM with the desired number of visible and hidden units. rbm = RBM(num_visible = 6, num_hidden = 2) Next, train the m

Edwin Chen 928 Dec 30, 2022
Delta Conformity Sociopatterns Analysis - Delta Conformity Sociopatterns Analysis

Delta_Conformity_Sociopatterns_Analysis ∆-Conformity is a local homophily measur

2 Jan 09, 2022
ConvMAE: Masked Convolution Meets Masked Autoencoders

ConvMAE ConvMAE: Masked Convolution Meets Masked Autoencoders Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1, 1 Shanghai AI Laboratory, 2 M

Alpha VL Team of Shanghai AI Lab 345 Jan 08, 2023
Official implementation of deep-multi-trajectory-based single object tracking (IEEE T-CSVT 2021).

DeepMTA_PyTorch Officical PyTorch Implementation of "Dynamic Attention-guided Multi-TrajectoryAnalysis for Single Object Tracking", Xiao Wang, Zhe Che

Xiao Wang(王逍) 7 Dec 03, 2022
Bottleneck Transformers for Visual Recognition

Bottleneck Transformers for Visual Recognition Experiments Model Params (M) Acc (%) ResNet50 baseline (ref) 23.5M 93.62 BoTNet-50 18.8M 95.11% BoTNet-

Myeongjun Kim 236 Jan 03, 2023
Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation (ICCV2021)

Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation This is a pytorch project for the paper Dynamic Divide-and-Conquer Ad

DV Lab 29 Nov 21, 2022
This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

🌈 ERASOR (RA-L'21 with ICRA Option) Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point C

Hyungtae Lim 225 Dec 29, 2022
JORLDY an open-source Reinforcement Learning (RL) framework provided by KakaoEnterprise

Repository for Open Source Reinforcement Learning Framework JORLDY

Kakao Enterprise Corp. 330 Dec 30, 2022
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
GrabGpu_py: a scripts for grab gpu when gpu is free

GrabGpu_py a scripts for grab gpu when gpu is free. WaitCondition: gpu_memory

tianyuluan 3 Jun 18, 2022
EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
Deploy pytorch classification model using Flask and Streamlit

Deploy pytorch classification model using Flask and Streamlit

Ben Seo 1 Nov 17, 2021
Individual Tree Crown classification on WorldView-2 Images using Autoencoder -- Group 9 Weak learners - Final Project (Machine Learning 2020 Course)

Created by Olga Sutyrina, Sarah Elemili, Abduragim Shtanchaev and Artur Bille Individual Tree Crown classification on WorldView-2 Images using Autoenc

2 Dec 08, 2022
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Dec 29, 2022
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022