Hydra Lightning Template for Structured Configs

Overview

Hydra Lightning Template for Structured Configs

Template for creating projects with pytorch-lightning and hydra.

How to use this template?

Create your own project on GitHub with this template by clicking the Use this template button.

You now have to only add your own dataloader, dataset, model, optimizer and loss and you should be ready to go. To see if you have all modules installed and everything works fine, you should run the unit tests!

How to add my own module?

For this tutorial it is expected that you already know pytorch (and best also some pytorch-lightning). If you don't know hydra that should be fine, but definitely check out their docs.

If you encounter any problems have a look at the my_simple_model branch of this repo, where I played through this complete tutorial. So you can find all files there.

Lets explore how to use hydra and this template by showcasing how one would add a simple own CNN to this repo. For the tests I used MNIST as dataset so we will just continue using that. But if you know how to write a pytorch-lightning Dataloader and a torch Dataset it should be just as easy to replace them after this small tutorial.

To add our own model we have to do the following steps:

  1. in the folder src/models we create a new file containing our torch model (a torch.nn.Module).
  2. Add the model in the hydra config library by adding it to the src/lib/model.py file.
  3. Register the model in the hydra global-config-register by following the pattern in src/lib/config.py and creating a new entry there.
  4. (Optional) Create a yaml file for the model. This makes sense if the model is used with a lot of different settings. So we can give those settings individual names, which makes them easier to call.
  5. Add an experiment using that model

1. Creating the simplest model:

Create the file src/models/my_simple_model.py with the following content:

import torch.nn as nn
import torch.nn.functional as F


class MySimpleModel(nn.Module):
    def __init__(self, input_channels=1, num_classes=10):
        super(MySimpleModel, self).__init__()

        # When the image enters the net at conv1 it has a size of 28x28x1, because there is a single color channel
        self.conv1 = nn.Conv2d(input_channels, 16, kernel_size=3, stride=1, padding=1, bias=True)
        # Since we are using padding the size of the image does not change after the conv layer
        self.max_pool = nn.MaxPool2d(kernel_size=2, stride=2)
        # due to the maxpooling shape and stride our image is now 14x14
        self.conv2 = nn.Conv2d(16, 16, kernel_size=3, stride=1, padding=1, bias=True)
        # still 14x14
        # We will again use maxpool so now it is 7x7
        self.fully_connected = nn.Linear(16 * 7 * 7, num_classes, bias=True)

    def forward(self, x):
        x = self.conv1(x)
        x = self.max_pool(x)
        x = self.conv2(x)
        x = self.max_pool(x)
        x = x.flatten(start_dim=1)  # To use a fully connected layer in the end we need to have a 1D array
        x = self.fully_connected(x)
        return F.softmax(x)  #  we apply a softmax here to return probabilities between 0 and 1

2. Add the model to the lib:

Change the file src/lib/model.py to add our model there. Just add the following lines:

@dataclass
class MySimpleModelLib:
    _target_: str = "src.models.my_simple_model.MySimpleModel"
    input_channels: int = 1
    num_classes: int = 10

A few pittfalls to avoid are:

  • Do not forget to decorate your class with @dataclass !
  • do not forget to specify the type !
  • Have a look at other lib files to see how to implement None as default and use the Any type.
  • do not forget any inputs to the actual model (like forget the parameter input_channels) because you will never be able to override the input channels from outside the source code.

3. Register the model in hydra:

For hydra to know about your model, you have to register it. We do this in the file src/lib/config.py. All we have to do here is adding 2 lines.

  1. We have to import the library model. So at the imports we add:
from src.lib.model import MySimpleModelLib
  1. Register the model by using the hydra ConfigStore. Best keep the code clean, so find the section where the models are defined and add:
cs.store(name="my_simple_model_base", node=MySimpleModelLib, group=model_group)

I like to append the _base her to later distinguish between the yaml-config and the structured-config. If you want to know more about this you will probably have to read the hydra documentation.

4. Add a yaml config file:

This step is not necessary. We could already use our model in hydra now, which would at this point go under the name my_simple_model_base. But for the sake of completion lets create a yaml config as well.

For this we will have to create this file: conf/model/my_simple_model.yaml

The content of this file should be

defaults:
  - my_simple_model_base  # this is the name of the registered model that we would like to extend
  - _self_  # adding this BELOW!! the registered name means, that everything in this yaml file will override the defaults

# you can only specify values here that are also in the registered model (src/lib/model/MySimpleModelLib)
num_classes: 10
input_channels: 1

If you want, you can of course drop the comments.

Why did we create this config file? Lets say you would like to also have t he same model, but with 3 input channels when you do predictions on colored images. All you would have to do is either change the value input_channels: 3 of the file conf/model/my_simple_model.yaml. But if you want to give it a distiguishable name (which makes sense for more complex usecases) then you can just create another file conf/model/my_simple_model_rgb.yaml for example, which has the content

defaults:
  - my_simple_model_base
  - _self_

num_classes: 10
input_channels: 3  # <- this is the only thing that changed

Now you could from a command line very easily switch between the 2 configs without remembering any specific numbers.

5. Add an experiment using that model:

There are 2 ways to use your model now in a training run.

  1. From the command line: All you have to do is keep everything with the defaults and just exchanging the model from the command line using hydras command line interface:
python main.py model=my_simple_model

or

python main.py model=my_simple_model_rgb

or if you did not create the yaml-file:

python main.py model=my_simple_model_base

From the command line we could also specify different inputs to our model:

python main.py model=my_simple_model_base model.input_channels=3
  1. We can create an experiment using this model. This definitely is preferable when the setups get more complex. For this, we have to create a new yaml file in the experiment folder. So lets create the file conf/experiment/my_simple_model_experiment.yaml with the following content:
# @package _global_

defaults:
  - override /lightning_module: default
  - override /datamodule: mnist
  - override /datamodule/dataset: mnist
  - override /loss: nll_loss
  - override /datamodule/train_transforms: no_transforms
  - override /datamodule/valid_transforms: no_transforms
  - override /model: my_simple_model  # <- this is the line where we add our own model to the experiment
  - override /optimizer: sgd
  - override /loss: nll_loss
  - override /strategy: null
  - override /logger/tensorboard: tensorboard
  - override /callbacks/checkpoint: model_checkpoint
  - override /callbacks/early_stopping: early_stopping
  - override /callbacks/lr_monitor: lr_monitor

  - override /hydra/launcher: local
  - _self_

output_dir_base_path: ./outputs
random_seed: 7
print_config: true
log_level: "info"

trainer:
  fast_dev_run: false
  num_sanity_val_steps: 3
  max_epochs: 3
  gpus: 0
  limit_train_batches: 3
  limit_val_batches: 3

datamodule:
  num_workers: 0
  batch_size: 4

Most settings here are the same as in the defaults, which are specified in conf/config.yaml but for this tutorial I think explicit is easier to understand the implicit.

To use the experiment we run our model with

python main.py +experiment=my_simple_model_experiment

Again we can also change all set values from the command line

python main.py +experiment=my_simple_model_experiment datamodule.num_workers=20

It should be easy now to follow the same steps to include your own datamodule, dataset, transforms, optimizers or whatever else you might need.

Owner
Model-driven Machine Learning
Model-driven Machine Learning
MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモ

Tokyo2020-Pictogram-using-MediaPipe MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモです。 Tokyo2020Pictgram02.mp4 Requirement mediapipe 0.8.6 or later O

KazuhitoTakahashi 295 Dec 26, 2022
Deep Inside Convolutional Networks - This is a caffe implementation to visualize the learnt model

Deep Inside Convolutional Networks This is a caffe implementation to visualize the learnt model. Part of a class project at Georgia Tech Problem State

Jigar 61 Apr 15, 2022
An end-to-end machine learning web app to predict rugby scores (Pandas, SQLite, Keras, Flask, Docker)

Rugby score prediction An end-to-end machine learning web app to predict rugby scores Overview An demo project to provide a high-level overview of the

34 May 24, 2022
A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022)

A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022) https://arxiv.org/abs/2203.09388 Jianqi Ma, Zheto

MA Jianqi, shiki 104 Jan 05, 2023
Unofficial implementation of the Involution operation from CVPR 2021

involution_pytorch Unofficial PyTorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition" by Li et al. prese

Rishabh Anand 46 Dec 07, 2022
Paper Code:A Self-adaptive Weighted Differential Evolution Approach for Large-scale Feature Selection

1. SaWDE.m is the main function 2. DataPartition.m is used to randomly partition the original data into training sets and test sets with a ratio of 7

wangxb 14 Dec 08, 2022
This implements one of result networks from Large-scale evolution of image classifiers

Exotic structured image classifier This implements one of result networks from Large-scale evolution of image classifiers by Esteban Real, et. al. Req

54 Nov 25, 2022
A PyTorch-centric hybrid classical-quantum machine learning framework

torchquantum A PyTorch-centric hybrid classical-quantum dynamic neural networks framework. News Add a simple example script using quantum gates to do

MIT HAN Lab 400 Jan 02, 2023
K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022
Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22)

Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22) Ok-Topk is a scheme for distributed training with sparse gradients

Shigang Li 9 Oct 29, 2022
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

This repository provides the official code for replicating experiments from the paper: Semi-Supervised Semantic Segmentation with Pixel-Level Contrast

Iñigo Alonso Ruiz 58 Dec 15, 2022
Cobalt Strike teamserver detection.

Cobalt-Strike-det Cobalt Strike teamserver detection. usage: cobaltstrike_verify.py [-l TARGETS] [-t THREADS] optional arguments: -h, --help show this

TimWhite 17 Sep 27, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
Official Repository for Machine Learning class - Physics Without Frontiers 2021

PWF 2021 Física Sin Fronteras es un proyecto del Centro Internacional de Física Teórica (ICTP) en Trieste Italia. El ICTP es un centro dedicado a fome

36 Aug 06, 2022
FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware.

FIRM-AFL FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware. FIRM-AFL addresses two fundamental problems in IoT fuzzing. First, it

356 Dec 23, 2022
A vanilla 3D face modeling on pose-invariant and multi-lightning image data

3D-Face-Modeling A vanilla 3D face modeling on pose-invariant and multi-lightning image data Table of Contents Background Install Usage Contributing B

Haochen Zhang 1 Mar 12, 2022
TensorFlow-LiveLessons - "Deep Learning with TensorFlow" LiveLessons

TensorFlow-LiveLessons Note that the second edition of this video series is now available here. The second edition contains all of the content from th

Deep Learning Study Group 830 Jan 03, 2023