Hydra Lightning Template for Structured Configs

Overview

Hydra Lightning Template for Structured Configs

Template for creating projects with pytorch-lightning and hydra.

How to use this template?

Create your own project on GitHub with this template by clicking the Use this template button.

You now have to only add your own dataloader, dataset, model, optimizer and loss and you should be ready to go. To see if you have all modules installed and everything works fine, you should run the unit tests!

How to add my own module?

For this tutorial it is expected that you already know pytorch (and best also some pytorch-lightning). If you don't know hydra that should be fine, but definitely check out their docs.

If you encounter any problems have a look at the my_simple_model branch of this repo, where I played through this complete tutorial. So you can find all files there.

Lets explore how to use hydra and this template by showcasing how one would add a simple own CNN to this repo. For the tests I used MNIST as dataset so we will just continue using that. But if you know how to write a pytorch-lightning Dataloader and a torch Dataset it should be just as easy to replace them after this small tutorial.

To add our own model we have to do the following steps:

  1. in the folder src/models we create a new file containing our torch model (a torch.nn.Module).
  2. Add the model in the hydra config library by adding it to the src/lib/model.py file.
  3. Register the model in the hydra global-config-register by following the pattern in src/lib/config.py and creating a new entry there.
  4. (Optional) Create a yaml file for the model. This makes sense if the model is used with a lot of different settings. So we can give those settings individual names, which makes them easier to call.
  5. Add an experiment using that model

1. Creating the simplest model:

Create the file src/models/my_simple_model.py with the following content:

import torch.nn as nn
import torch.nn.functional as F


class MySimpleModel(nn.Module):
    def __init__(self, input_channels=1, num_classes=10):
        super(MySimpleModel, self).__init__()

        # When the image enters the net at conv1 it has a size of 28x28x1, because there is a single color channel
        self.conv1 = nn.Conv2d(input_channels, 16, kernel_size=3, stride=1, padding=1, bias=True)
        # Since we are using padding the size of the image does not change after the conv layer
        self.max_pool = nn.MaxPool2d(kernel_size=2, stride=2)
        # due to the maxpooling shape and stride our image is now 14x14
        self.conv2 = nn.Conv2d(16, 16, kernel_size=3, stride=1, padding=1, bias=True)
        # still 14x14
        # We will again use maxpool so now it is 7x7
        self.fully_connected = nn.Linear(16 * 7 * 7, num_classes, bias=True)

    def forward(self, x):
        x = self.conv1(x)
        x = self.max_pool(x)
        x = self.conv2(x)
        x = self.max_pool(x)
        x = x.flatten(start_dim=1)  # To use a fully connected layer in the end we need to have a 1D array
        x = self.fully_connected(x)
        return F.softmax(x)  #  we apply a softmax here to return probabilities between 0 and 1

2. Add the model to the lib:

Change the file src/lib/model.py to add our model there. Just add the following lines:

@dataclass
class MySimpleModelLib:
    _target_: str = "src.models.my_simple_model.MySimpleModel"
    input_channels: int = 1
    num_classes: int = 10

A few pittfalls to avoid are:

  • Do not forget to decorate your class with @dataclass !
  • do not forget to specify the type !
  • Have a look at other lib files to see how to implement None as default and use the Any type.
  • do not forget any inputs to the actual model (like forget the parameter input_channels) because you will never be able to override the input channels from outside the source code.

3. Register the model in hydra:

For hydra to know about your model, you have to register it. We do this in the file src/lib/config.py. All we have to do here is adding 2 lines.

  1. We have to import the library model. So at the imports we add:
from src.lib.model import MySimpleModelLib
  1. Register the model by using the hydra ConfigStore. Best keep the code clean, so find the section where the models are defined and add:
cs.store(name="my_simple_model_base", node=MySimpleModelLib, group=model_group)

I like to append the _base her to later distinguish between the yaml-config and the structured-config. If you want to know more about this you will probably have to read the hydra documentation.

4. Add a yaml config file:

This step is not necessary. We could already use our model in hydra now, which would at this point go under the name my_simple_model_base. But for the sake of completion lets create a yaml config as well.

For this we will have to create this file: conf/model/my_simple_model.yaml

The content of this file should be

defaults:
  - my_simple_model_base  # this is the name of the registered model that we would like to extend
  - _self_  # adding this BELOW!! the registered name means, that everything in this yaml file will override the defaults

# you can only specify values here that are also in the registered model (src/lib/model/MySimpleModelLib)
num_classes: 10
input_channels: 1

If you want, you can of course drop the comments.

Why did we create this config file? Lets say you would like to also have t he same model, but with 3 input channels when you do predictions on colored images. All you would have to do is either change the value input_channels: 3 of the file conf/model/my_simple_model.yaml. But if you want to give it a distiguishable name (which makes sense for more complex usecases) then you can just create another file conf/model/my_simple_model_rgb.yaml for example, which has the content

defaults:
  - my_simple_model_base
  - _self_

num_classes: 10
input_channels: 3  # <- this is the only thing that changed

Now you could from a command line very easily switch between the 2 configs without remembering any specific numbers.

5. Add an experiment using that model:

There are 2 ways to use your model now in a training run.

  1. From the command line: All you have to do is keep everything with the defaults and just exchanging the model from the command line using hydras command line interface:
python main.py model=my_simple_model

or

python main.py model=my_simple_model_rgb

or if you did not create the yaml-file:

python main.py model=my_simple_model_base

From the command line we could also specify different inputs to our model:

python main.py model=my_simple_model_base model.input_channels=3
  1. We can create an experiment using this model. This definitely is preferable when the setups get more complex. For this, we have to create a new yaml file in the experiment folder. So lets create the file conf/experiment/my_simple_model_experiment.yaml with the following content:
# @package _global_

defaults:
  - override /lightning_module: default
  - override /datamodule: mnist
  - override /datamodule/dataset: mnist
  - override /loss: nll_loss
  - override /datamodule/train_transforms: no_transforms
  - override /datamodule/valid_transforms: no_transforms
  - override /model: my_simple_model  # <- this is the line where we add our own model to the experiment
  - override /optimizer: sgd
  - override /loss: nll_loss
  - override /strategy: null
  - override /logger/tensorboard: tensorboard
  - override /callbacks/checkpoint: model_checkpoint
  - override /callbacks/early_stopping: early_stopping
  - override /callbacks/lr_monitor: lr_monitor

  - override /hydra/launcher: local
  - _self_

output_dir_base_path: ./outputs
random_seed: 7
print_config: true
log_level: "info"

trainer:
  fast_dev_run: false
  num_sanity_val_steps: 3
  max_epochs: 3
  gpus: 0
  limit_train_batches: 3
  limit_val_batches: 3

datamodule:
  num_workers: 0
  batch_size: 4

Most settings here are the same as in the defaults, which are specified in conf/config.yaml but for this tutorial I think explicit is easier to understand the implicit.

To use the experiment we run our model with

python main.py +experiment=my_simple_model_experiment

Again we can also change all set values from the command line

python main.py +experiment=my_simple_model_experiment datamodule.num_workers=20

It should be easy now to follow the same steps to include your own datamodule, dataset, transforms, optimizers or whatever else you might need.

Owner
Model-driven Machine Learning
Model-driven Machine Learning
Matthew Colbrook 1 Apr 08, 2022
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Meta Research 29 Dec 02, 2022
Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions"

ModelNet-C Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com

Jiawei Ren 45 Dec 28, 2022
A robust pointcloud registration pipeline based on correlation.

PHASER: A Robust and Correspondence-Free Global Pointcloud Registration Ubuntu 18.04+ROS Melodic: Overview Pointcloud registration using correspondenc

ETHZ ASL 101 Dec 01, 2022
Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads-Tutorial-3 Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads Inc 2 Jan 03, 2022
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
Sparse Physics-based and Interpretable Neural Networks

Sparse Physics-based and Interpretable Neural Networks for PDEs This repository contains the code and manuscript for research done on Sparse Physics-b

28 Jan 03, 2023
[ICML 2021] "Graph Contrastive Learning Automated" by Yuning You, Tianlong Chen, Yang Shen, Zhangyang Wang

Graph Contrastive Learning Automated PyTorch implementation for Graph Contrastive Learning Automated [talk] [poster] [appendix] Yuning You, Tianlong C

Shen Lab at Texas A&M University 80 Nov 23, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
Apply our monocular depth boosting to your own network!

MergeNet - Boost Your Own Depth Boost custom or edited monocular depth maps using MergeNet Input Original result After manual editing of base You can

Computational Photography Lab @ SFU 142 Dec 17, 2022
A simple approach to emable dense segmentation with ViT.

Vision Transformer Segmentation Network This implementation of ViT in pytorch uses a super simple and straight-forward way of generating an output of

HReynaud 5 Jan 03, 2023
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

DeepMind 892 Dec 28, 2022
PyTorch and GPyTorch implementation of the paper "Conditioning Sparse Variational Gaussian Processes for Online Decision-making."

Conditioning Sparse Variational Gaussian Processes for Online Decision-making This repository contains a PyTorch and GPyTorch implementation of the pa

Wesley Maddox 16 Dec 08, 2022
A clean and robust Pytorch implementation of PPO on continuous action space.

PPO-Continuous-Pytorch I found the current implementation of PPO on continuous action space is whether somewhat complicated or not stable. And this is

XinJingHao 56 Dec 16, 2022
Predicting Tweet Sentiment Maching Learning and streamlit

Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit (I prefere using Visual Studio Code ) Open the folder in VS Code Run the first cell in requi

1 Nov 20, 2021
Create Own QR code with Python

Create-Own-QR-code Create Own QR code with Python SO guys in here, you have to install pyqrcode 2. open CMD and type python -m pip install pyqrcode

JehanKandy 10 Jul 13, 2022
Official TensorFlow code for the forthcoming paper

~ Efficient-CapsNet ~ Are you tired of over inflated and overused convolutional neural networks? You're right! It's time for CAPSULES :)

Vittorio Mazzia 203 Jan 08, 2023
Deep Reinforcement Learning with pytorch & visdom

Deep Reinforcement Learning with pytorch & visdom Sample testings of trained agents (DQN on Breakout, A3C on Pong, DoubleDQN on CartPole, continuous A

Jingwei Zhang 783 Jan 04, 2023
Deeper DCGAN with AE stabilization

AEGeAN Deeper DCGAN with AE stabilization Parallel training of generative adversarial network as an autoencoder with dedicated losses for each stage.

Tyler Kvochick 36 Feb 17, 2022
The Official PyTorch Implementation of DiscoBox.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib

NVIDIA Research Projects 89 Jan 09, 2023