A nutritional label for food for thought.

Overview

Lexiscore

As a first effort in tackling the theme of information overload in content consumption, I've been working on the lexiscore: a nutritional label for food for thought designed to help you narrow in on resources which personally bring you the most value. The open source companion software can automatically label raw text originating from RSS feeds, bookmarked pages, PDFs, EPUBs, and more. In the scope of this project, I'm considering valuable resources to be those from which you learn a lot, those which are packed with ideas you find surprising.

Read more...

Installation

Note: This tool requires a running instance of the conceptarium as a proxy for your knowledge.

The lexiscore labeler can either be deployed from source or using Docker.

Docker

To deploy the lexiscore labeler using Docker, first make sure to have Docker installed, then simply run the following.

docker run -p 8501:8501 paulbricman/lexiscore 

The tool should be available at localhost:8501.

From Source

To set up the lexiscore labeler, clone the repository and run the following:

python3 -m pip install -r requirements.txt
streamlit run main.py

The tool should be available at localhost:8501.

Screenshots

You might also like...
MPLP: Metapath-Based Label Propagation for Heterogenous Graphs

MPLP: Metapath-Based Label Propagation for Heterogenous Graphs Results on MAG240M Here, we demonstrate the following performance on the MAG240M datase

Official Pytorch Implementation of:
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

 Shared Attention for Multi-label Zero-shot Learning
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Code for Two-stage Identifier:
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

General Multi-label Image Classification with Transformers

General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio

Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021.

UniRE Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021. Requirements python: 3.7.6 pytorch: 1.8.1 transformers:

Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

Official implementation of paper
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa

Comments
  • RSS OPML only pulls last article

    RSS OPML only pulls last article

    Summary

    Adding RSS from OPML only pulls the last article.

    Details

    After setting up lexiscore, I take my blog's RSS (https://ivans.io/rss/) and convert it to OPML using https://opml-gen.ovh/. This yields the following file:

    <opml version="2.0">
    	<body>
    		<outline text="Subscriptions" title="Subscriptions">
    			<outline xmlUrl='https://ivans.io/rss/' />
    	
    		</outline>
    	</body>
    </opml>
    

    After adding this to lexiscore, only the most recent article appears in the reading list. I've checked the RSS feed, and all articles are fully present.

    Desired Behavior

    RSS feeds should pull all articles.

    opened by issmirnov 4
  • NLTK downloader problem when deploying with docker.

    NLTK downloader problem when deploying with docker.

    I have deployed the docker image to my personal server. After importing the RSS from my blog (https://ivans.io/rss/) as an OPML file, I click on "start labelling". This causes a stack trace:

    LookupError: ********************************************************************** 
    Resource punkt not found. Please use the NLTK Downloader to obtain the resource: 
    [31m>>> import nltk >>> nltk.download('punkt') 
    [0m For more information see: https://www.nltk.org/data.html Attempted to load tokenizers/punkt/PY3/english.pickle
    [0m Searched in: - '/root/nltk_data' - '/usr/local/nltk_data' - '/usr/local/share/nltk_data' - '/usr/local/lib/nltk_data' - '/usr/share/nltk_data' - '/usr/local/share/nltk_data' - '/usr/lib/nltk_data' - '/usr/local/lib/nltk_data' - '' **********************************************************************
    Traceback:
    File "/usr/local/lib/python3.8/site-packages/streamlit/script_runner.py", line 354, in _run_script
        exec(code, module.__dict__)
    File "/app/main.py", line 30, in <module>
        cart_section(col2)
    File "/app/components.py", line 110, in cart_section
        content_paragraphs = get_paragraphs(row['text'])
    File "/app/processing.py", line 19, in get_paragraphs
        sents = sent_tokenize(line)
    File "/usr/local/lib/python3.8/site-packages/nltk/tokenize/__init__.py", line 107, in sent_tokenize
        tokenizer = load("tokenizers/punkt/{0}.pickle".format(language))
    File "/usr/local/lib/python3.8/site-packages/nltk/data.py", line 750, in load
        opened_resource = _open(resource_url)
    File "/usr/local/lib/python3.8/site-packages/nltk/data.py", line 875, in _open
        return find(path_, path + [""]).open()
    File "/usr/local/lib/python3.8/site-packages/nltk/data.py", line 583, in find
        raise LookupError(resource_not_found)
    
    opened by issmirnov 3
  • Add aggregator page as input source

    Add aggregator page as input source

    Imagine adding this as input sources of type "Aggregator": https://metaphor.so/search?q=The%20coolest%20essay%20on%20human-machine%20collaboration%2C%20cognitive%20augmentation%2C%20and%20tools%20for%20thought%20is

    The labeling software would sift through and add a nutritional value filter on top of a cool "search" approach

    enhancement 
    opened by paulbricman 0
  • Save concptarium URL with local cookie

    Save concptarium URL with local cookie

    Currently, I have this deployed via docker on a personal server. On every page refresh, I am asked for the url of the conceptarium. It would be useful to have this URL saved in local cookie storage.

    enhancement 
    opened by issmirnov 1
Releases(v1.0.0)
Owner
Paul Bricman
Building tools which augment the mind.
Paul Bricman
Self-Supervised Learning for Domain Adaptation on Point-Clouds

Self-Supervised Learning for Domain Adaptation on Point-Clouds Introduction Self-supervised learning (SSL) allows to learn useful representations from

Idan Achituve 66 Dec 20, 2022
The fundamental package for scientific computing with Python.

NumPy is the fundamental package needed for scientific computing with Python. Website: https://www.numpy.org Documentation: https://numpy.org/doc Mail

NumPy 22.4k Jan 09, 2023
A TensorFlow implementation of FCN-8s

FCN-8s implementation in TensorFlow Contents Overview Examples and demo video Dependencies How to use it Download pre-trained VGG-16 Overview This is

Pierluigi Ferrari 50 Aug 08, 2022
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
Data-depth-inference - Data depth inference with python

Welcome! This readme will guide you through the use of the code in this reposito

Marco 3 Feb 08, 2022
An interactive DNN Model deployed on web that predicts the chance of heart failure for a patient with an accuracy of 98%

Heart Failure Predictor About A Web UI deployed Dense Neural Network Model Made using Tensorflow that predicts whether the patient is healthy or has c

Adit Ahmedabadi 0 Jan 09, 2022
Torch implementation of "Enhanced Deep Residual Networks for Single Image Super-Resolution"

NTIRE2017 Super-resolution Challenge: SNU_CVLab Introduction This is our project repository for CVPR 2017 Workshop (2nd NTIRE). We, Team SNU_CVLab, (B

Bee Lim 625 Dec 30, 2022
[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting

[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting [Paper] [Project Website] [Google Colab] We propose a method for converting a

Virginia Tech Vision and Learning Lab 6.2k Jan 01, 2023
VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)

Preparation Please see dataset/README.md to get more details about our datasets-VIL100 Please see INSTALL.md to install environment and evaluation too

82 Dec 15, 2022
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
Simultaneous Detection and Segmentation

Simultaneous Detection and Segmentation This is code for the ECCV Paper: Simultaneous Detection and Segmentation Bharath Hariharan, Pablo Arbelaez,

Bharath Hariharan 96 Jul 20, 2022
A machine learning library for spiking neural networks. Supports training with both torch and jax pipelines, and deployment to neuromorphic hardware.

Rockpool Rockpool is a Python package for developing signal processing applications with spiking neural networks. Rockpool allows you to build network

SynSense 21 Dec 14, 2022
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models

Ashish Bora 87 Oct 19, 2022
Implementation of the Point Transformer layer, in Pytorch

Point Transformer - Pytorch Implementation of the Point Transformer self-attention layer, in Pytorch. The simple circuit above seemed to have allowed

Phil Wang 501 Jan 03, 2023
Supervised Contrastive Learning for Downstream Optimized Sequence Representations

SupCL-Seq 📖 Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, ext

Hooman Sedghamiz 18 Oct 21, 2022
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

Appen Repos 86 Dec 07, 2022
🕺Full body detection and tracking

Pose-Detection 🤔 Overview Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign

Abbas Ataei 20 Nov 21, 2022
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

Multimodal Lab @ Samsung AI Center Moscow 201 Dec 21, 2022
Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

tonne 1.4k Dec 29, 2022
Pytorch implementation of the paper "Class-Balanced Loss Based on Effective Number of Samples"

Class-balanced-loss-pytorch Pytorch implementation of the paper Class-Balanced Loss Based on Effective Number of Samples presented at CVPR'19. Yin Cui

Vandit Jain 697 Dec 29, 2022