Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Overview

Embedding Transfer with Label Relaxation for Improved Metric Learning

Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label Relaxation for Improved Metric Learning.

Embedding trnasfer with Relaxed Contrastive Loss improves performance, or reduces sizes and output dimensions of embedding model effectively.

This repository provides source code of experiments on three datasets (CUB-200-2011, Cars-196 and Stanford Online Products) including relaxed contrastive loss, relaxed MS loss, and 6 other knowledge distillation or embedding transfer methods such as:

  • FitNet, Fitnets: hints for thin deep nets
  • Attention, Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer
  • CRD, Contrastive Representation Distillation
  • DarkRank, Darkrank: Accelerating Deep Metric Learning via Cross Sample Similarities Transfer
  • PKT, Learning Deep Representations with Probabilistic Knowledge Transfer
  • RKD, Relational Knowledge Distillation

Overview

Relaxed Contrastive Loss

  • Relaxed contrastive loss exploits pairwise similarities between samples in the source embedding space as relaxed labels, and transfers them through a contrastive loss used for learning target embedding models.

graph

Experimental Restuls

  • Our method achieves the state of the art when embedding dimension is 512, and is as competitive as recent metric learning models even with a substantially smaller embedding dimension. In all experiments, it is superior to other embedding transfer techniques.

graph

Requirements

Prepare Datasets

  1. Download three public benchmarks for deep metric learning.

  2. Extract the tgz or zip file into ./data/ (Exceptionally, for Cars-196, put the files in a ./data/cars196)

Prepare Pretrained Source models

Download the pretrained source models using ./scripts/download_pretrained_source_models.sh.

sh scripts/download_pretrained_source_models.sh

Training Target Embedding Network with Relaxed Contrastive Loss

Self-transfer Setting

  • Transfer the knowledge of source model to target model with the same architecture and embedding dimension for performance improvement.
  • Source Embedding Network (BN–Inception, 512 dim) đź ˘ Target Embedding Network (BN–Inception, 512 dim)

CUB-200-2011

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model bn_inception \
--embedding-size 512 --batch-size 90 --IPC 2 --dataset cub --epochs 90 \
--source-ckpt ./pretrained_source/bn_inception/cub_bn_inception_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1

Cars-196

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model bn_inception \ 
--embedding-size 512 --batch-size 90 --IPC 2 --dataset cars --epochs 90 \
--source-ckpt ./pretrained_source/bn_inception/cars_bn_inception_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1

SOP

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model bn_inception \
--embedding-size 512 --batch-size 90 --IPC 2 --dataset SOP --epochs 150 \
--source-ckpt ./pretrained_source/bn_inception/SOP_bn_inception_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1
CUB-200-2011 Cars-196 SOP
Method Backbone [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
Source: PA BN512 69.1 78.9 86.1 86.4 91.9 95.0 79.2 90.7 96.2
FitNet BN512 69.9 79.5 86.2 87.6 92.2 95.6 78.7 90.4 96.1
Attention BN512 66.3 76.2 84.5 84.7 90.6 94.2 78.2 90.4 96.2
CRD BN512 67.7 78.1 85.7 85.3 91.1 94.8 78.1 90.2 95.8
DarkRank BN512 66.7 76.5 84.8 84.0 90.0 93.8 75.7 88.3 95.3
PKT BN512 69.1 78.8 86.4 86.4 91.6 94.9 78.4 90.2 96.0
RKD BN512 70.9 80.8 87.5 88.9 93.5 96.4 78.5 90.2 96.0
Ours BN512 72.1 81.3 87.6 89.6 94.0 96.5 79.8 91.1 96.3

Dimensionality Reduction Setting

  • Transfer to the same architecture with a lower embedding dimension for efficient image retrieval.
  • Source Embedding Network (BN–Inception, 512 dim) đź ˘ Target Embedding Network (BN–Inception, 64 dim)

CUB-200-2011

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model bn_inception \
--embedding-size 64 --batch-size 90 --IPC 2 --dataset cub --epochs 90 \
--source-ckpt ./pretrained_source/bn_inception/cub_bn_inception_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1

Cars-196

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model bn_inception \
--embedding-size 64 --batch-size 90 --IPC 2 --dataset cars --epochs 90 \
--source-ckpt ./pretrained_source/bn_inception/cars_bn_inception_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1

SOP

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model bn_inception \
--embedding-size 64 --batch-size 90 --IPC 2 --dataset SOP --epochs 150 \
--source-ckpt ./pretrained_source/bn_inception/SOP_bn_inception_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1
CUB-200-2011 Cars-196 SOP
Method Backbone [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
Source: PA BN512 69.1 78.9 86.1 86.4 91.9 95.0 79.2 90.7 96.2
FitNet BN64 62.3 73.8 83.0 81.2 87.7 92.5 76.6 89.3 95.4
Attention BN64 58.3 69.4 79.1 79.2 86.7 91.8 76.3 89.2 95.4
CRD BN64 60.9 72.7 81.7 79.2 87.2 92.1 75.5 88.3 95.3
DarkRank BN64 63.5 74.3 83.1 78.1 85.9 91.1 73.9 87.5 94.8
PKT BN64 63.6 75.8 84.0 82.2 88.7 93.5 74.6 87.3 94.2
RKD BN64 65.8 76.7 85.0 83.7 89.9 94.1 70.2 83.8 92.1
Ours BN64 67.4 78.0 85.9 86.5 92.3 95.3 76.3 88.6 94.8

Model Compression Setting

  • Transfer to a smaller network with a lower embedding dimension for usage in low-power and resource limited devices.
  • Source Embedding Network (ResNet50, 512 dim) đź ˘ Target Embedding Network (ResNet18, 128 dim)

CUB-200-2011

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model resnet18 \
--embedding-size 128 --batch-size 90 --IPC 2 --dataset cub --epochs 90 \
--source-ckpt ./pretrained_source/resnet50/cub_resnet50_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1

Cars-196

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model resnet18 \
--embedding-size 128 --batch-size 90 --IPC 2 --dataset cars --epochs 90 \
--source-ckpt ./pretrained_source/resnet50/cars_resnet50_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1

SOP

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model resnet18 \
--embedding-size 128 --batch-size 90 --IPC 2 --dataset SOP --epochs 150 \
--source-ckpt ./pretrained_source/resnet50/SOP_resnet50_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1
CUB-200-2011 Cars-196 SOP
Method Backbone [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
Source: PA R50512 69.9 79.6 88.6 87.7 92.7 95.5 80.5 91.8 98.8
FitNet R18128 61.0 72.2 81.1 78.5 86.0 91.4 76.7 89.4 95.5
Attention R18128 61.0 71.7 81.5 78.6 85.9 91.0 76.4 89.3 95.5
CRD R18128 62.8 73.8 83.2 80.6 87.9 92.5 76.2 88.9 95.3
DarkRank R18128 61.2 72.5 82.0 75.3 83.6 89.4 72.7 86.7 94.5
PKT R18128 65.0 75.6 84.8 81.6 88.8 93.4 76.9 89.2 95.5
RKD R18128 65.8 76.3 84.8 84.2 90.4 94.3 75.7 88.4 95.1
Ours R18128 66.6 78.1 85.9 86.0 91.6 95.3 78.4 90.4 96.1

Train Source Embedding Network

This repository also provides code for training source embedding network with several losses as well as proxy-anchor loss. For details on how to train the source embedding network, please see the Proxy-Anchor Loss repository.

  • For example, training source embedding network (BN–Inception, 512 dim) with Proxy-Anchor Loss on the CUB-200-2011 as
python code/train_source.py --gpu-id 0 --loss Proxy_Anchor --model bn_inception \
--embedding-size 512 --batch-size 180 --lr 1e-4 --dataset cub \
--warm 1 --bn-freeze 1 --lr-decay-step 10 

Evaluating Image Retrieval

Follow the below steps to evaluate the trained model.
Trained best model will be saved in the ./logs/folder_name.

# The parameters should be changed according to the model to be evaluated.
python code/evaluate.py --gpu-id 0 \
                   --batch-size 120 \
                   --model bn_inception \
                   --embedding-size 512 \
                   --dataset cub \
                   --ckpt /set/your/model/path/best_model.pth

Acknowledgements

Our source code is modified and adapted on these great repositories:

Citation

If you use this method or this code in your research, please cite as:

@inproceedings{kim2021embedding,
  title={Embedding Transfer with Label Relaxation for Improved Metric Learning},
  author={Kim, Sungyeon and Kim, Dongwon and Cho, Minsu and Kwak, Suha},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021}
}
Owner
Sungyeon Kim
Sungyeon Kim
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue

Zhenyu Jiang 12 Nov 16, 2022
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023
Tensorflow port of a full NetVLAD network

netvlad_tf The main intention of this repo is deployment of a full NetVLAD network, which was originally implemented in Matlab, in Python. We provide

Robotics and Perception Group 225 Nov 08, 2022
Instance-Dependent Partial Label Learning

Instance-Dependent Partial Label Learning Installation pip install -r requirements.txt Run the Demo benchmark-random mnist python -u main.py --gpu 0 -

17 Dec 29, 2022
Composable transformations of Python+NumPy programsComposable transformations of Python+NumPy programs

Chex Chex is a library of utilities for helping to write reliable JAX code. This includes utils to help: Instrument your code (e.g. assertions) Debug

DeepMind 506 Jan 08, 2023
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von RĂĽtte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat

Dimitri 83 Jan 07, 2023
Deep and online learning with spiking neural networks in Python

Introduction The brain is the perfect place to look for inspiration to develop more efficient neural networks. One of the main differences with modern

Jason Eshraghian 447 Jan 03, 2023
Fit Fast, Explain Fast

FastExplain Fit Fast, Explain Fast Installing pip install fast-explain About FastExplain FastExplain provides an out-of-the-box tool for analysts to

8 Dec 15, 2022
[CVPR 2021] 'Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator'

[CVPR2021] Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator Overview This is the entire codebase for the paper

35 Dec 01, 2022
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap

Jeesoo Kim 10 Feb 01, 2022
A PyTorch implementation of the architecture of Mask RCNN

EDIT (AS OF 4th NOVEMBER 2019): This implementation has multiple errors and as of the date 4th, November 2019 is insufficient to be utilized as a reso

Sai Himal Allu 975 Dec 30, 2022
Pytorch code for our paper Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains)

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
Point-NeRF: Point-based Neural Radiance Fields

Point-NeRF: Point-based Neural Radiance Fields Project Sites | Paper | Primary c

Qiangeng Xu 662 Jan 01, 2023
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
scalingscattering

Scaling The Scattering Transform : Deep Hybrid Networks This repository contains the experiments found in the paper: https://arxiv.org/abs/1703.08961

Edouard Oyallon 78 Dec 21, 2022
Differentiable rasterization applied to 3D model simplification tasks

nvdiffmodeling Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Automatic 3D Model

NVIDIA Research Projects 336 Dec 30, 2022
A minimal TPU compatible Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF Minimal Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Result of Tiny-NeRF RGB Depth

Soumik Rakshit 11 Jul 24, 2022
Event sourced bank - A wide-and-shallow example using the Python event sourcing library

Event Sourced Bank A "wide but shallow" example of using the Python event sourci

3 Mar 09, 2022
A PyTorch implementation of "Semi-Supervised Graph Classification: A Hierarchical Graph Perspective" (WWW 2019)

SEAL ⠀⠀⠀ A PyTorch implementation of Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019) Abstract Node classification an

Benedek Rozemberczki 202 Dec 27, 2022