This is the repository for our paper Ditch the Gold Standard: Re-evaluating Conversational Question Answering

Overview

Ditch the Gold Standard: Re-evaluating Conversational Question Answering

This is the repository for our paper Ditch the Gold Standard: Re-evaluating Conversational Question Answering.

Overview

In this work, we conduct the first large-scale human evaluation of state-of-the-art conversational QA systems. In our evaluation, human annotators chat with conversational QA models about passages from the QuAC development set, and after that the annotators judge the correctness of model answers. We release the human annotated dataset in the following section.

We also identify a critical issue with the current automatic evaluation, which pre-collectes human-human conversations and uses ground-truth answers as conversational history (differences between different evaluations are shown in the following figure). By comparison, we find that the automatic evaluation does not always agree with the human evaluation. We propose a new evaluation protocol that is based on predicted history and question rewriting. Our experiments show that the new protocol better reflects real-world performance compared to the original automatic evaluation. We also provide the new evaluation protocol code in the following.

Different evaluation protocols

Human Evaluation Dataset

You can download the human annotation dataset from data/human_annotation_data.json. The json file contains one data field data, which is a list of conversations. Each conversation contains the following fields:

  • model_name: The model evaluated. One of bert4quac, graphflow, ham, excord.
  • context: The passage used in this conversation.
  • dialog_id: The ID from the original QuAC dataset.
  • qas: The conversation, which contains a list of QA pairs. Each QA pair has the following fields:
    • turn_id: The number of turn.
    • question: The question from the human annotator.
    • answer: The answer from the model.
    • valid: Whether the question is valid (annotated by our human annotator).
    • answerable: Whether the question is answerable (annotated by our human annotator).
    • correct: Whether the model's answer is correct (annotated by our human annotator).

Automatic model evaluation interface

We provide a convenient interface to test model performance on a few evaluation protocols compared in our paper, including Auto-Pred, Auto-Replace and our proposed evaluation protocol, Auto-Rewrite, which better demonstrates models' performance in human-model conversations. Please refer to our paper for more details. Following is a figure describing how Auto-Rewrite works.

Auto-rewrite

To use our evaluation interface on your own model, follow the steps:

  • Step 1: Download the QuAC dataset.

  • Step 2: Install allennlp, allennlp_models, ncr.replace_corefs through pip if you would like to use Auto-Rewrite.

  • Step 3: Download the CANARD dataset and set --canard_path if you would like to use Auto-Replace.

  • Step 4: Write a model interface following the template interface.py. Explanations to each function are provided through in-line comments. Make sure to import all your model dependencies at the top.

  • Step 5: Add the model to the evaluation script run_quac_eval.py. Changes that are need to be made are marked with #TODO.

  • Step 6: Run evaluation script. See run.sh for reference. Explanations of all arguments are provided in run_quac_eval.py. Make sure to turn on only one of --pred, --rewrite or --replace.

Citation

@article{li2021ditch,
   title={Ditch the Gold Standard: Re-evaluating Conversational Question Answering},
   author={Li, Huihan and Gao, Tianyu and Goenka, Manan and Chen, Danqi},
   journal={arXiv preprint arXiv:2112.08812},
   year={2021}
}
Owner
Princeton Natural Language Processing
Princeton Natural Language Processing
This a classic fintech problem that introduces real life difficulties such as data imbalance. Check out the notebook to find out more!

Credit Card Fraud Detection Introduction Online transactions have become a crucial part of any business over the years. Many of those transactions use

Jonathan Hasbani 0 Jan 20, 2022
TensorFlow 101: Introduction to Deep Learning for Python Within TensorFlow

TensorFlow 101: Introduction to Deep Learning I have worked all my life in Machine Learning, and I've never seen one algorithm knock over its benchmar

Sefik Ilkin Serengil 896 Jan 04, 2023
A Temporal Extension Library for PyTorch Geometric

Documentation | External Resources | Datasets PyTorch Geometric Temporal is a temporal (dynamic) extension library for PyTorch Geometric. The library

Benedek Rozemberczki 1.9k Jan 07, 2023
Optimize Trading Strategies Using Freqtrade

Optimize trading strategy using Freqtrade Short demo on building, testing and optimizing a trading strategy using Freqtrade. The DevBootstrap YouTube

DevBootstrap 139 Jan 01, 2023
Code of Puregaze: Purifying gaze feature for generalizable gaze estimation, AAAI 2022.

PureGaze: Purifying Gaze Feature for Generalizable Gaze Estimation Description Our work is accpeted by AAAI 2022. Picture: We propose a domain-general

39 Dec 05, 2022
Implementation of the paper "Language-agnostic representation learning of source code from structure and context".

Code Transformer This is an official PyTorch implementation of the CodeTransformer model proposed in: D. Zügner, T. Kirschstein, M. Catasta, J. Leskov

Daniel Zügner 131 Dec 13, 2022
PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

Mouxiao Huang 20 Nov 15, 2022
Official repository for the ICCV 2021 paper: UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model.

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
Code for testing convergence rates of Lipschitz learning on graphs

📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
Sample code and notebooks for Vertex AI, the end-to-end machine learning platform on Google Cloud

Google Cloud Vertex AI Samples Welcome to the Google Cloud Vertex AI sample repository. Overview The repository contains notebooks and community conte

Google Cloud Platform 560 Dec 31, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

1 Jan 23, 2022
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized C

Sam Bond-Taylor 139 Jan 04, 2023
Code Release for Learning to Adapt to Evolving Domains

EAML Code release for "Learning to Adapt to Evolving Domains" (NeurIPS 2020) Prerequisites PyTorch = 0.4.0 (with suitable CUDA and CuDNN version) tor

23 Dec 07, 2022
A PyTorch implementation for V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation

A PyTorch implementation of V-Net Vnet is a PyTorch implementation of the paper V-Net: Fully Convolutional Neural Networks for Volumetric Medical Imag

Matthew Macy 606 Dec 21, 2022
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Meta Research 29 Dec 02, 2022
Code for "Optimizing risk-based breast cancer screening policies with reinforcement learning"

Tempo: Optimizing risk-based breast cancer screening policies with reinforcement learning Introduction This repository was used to develop Tempo, as d

Adam Yala 12 Oct 11, 2022
Official Implementation and Dataset of "PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency", CVPR 2021

Portrait Photo Retouching with PPR10K Paper | Supplementary Material PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask an

184 Dec 11, 2022