[CVPR 2021] Pytorch implementation of Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs

Overview

Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs

Pytorch 1.7.0 cvxpy 1.1.11 tensorflow 1.14

In this work, we propose a framework HijackGAN, which enables non-linear latent space traversal and gain high-level controls, e.g., attributes, head poses, and landmarks, over unconditional image generation GANs in a fully black-box setting. It opens up the possibility of reusing GANs while raising concerns about unintended usage.

[Paper (CVPR 2021)][Project Page]

Prerequisites

Install required packages

pip install -r requirements.txt

Download pretrained GANs

Download the CelebAHQ pretrained weights of ProgressiveGAN [paper][code] and StyleGAN [paper][code], and then put those weights in ./models/pretrain. For example,

pretrain/
├── Pretrained_Models_Should_Be_Placed_Here
├── karras2018iclr-celebahq-1024x1024.pkl
├── karras2019stylegan-celebahq-1024x1024.pkl
├── pggan_celebahq_z.pt
├── stylegan_celebahq_z.pt
├── stylegan_headpose_z_dp.pt
└── stylegan_landmark_z.pt

Quick Start

Specify number of images to edit, a model to generate images, some parameters for editting.

LATENT_CODE_NUM=1
python edit.py \
    -m pggan_celebahq \
    -b boundaries/ \
    -n "$LATENT_CODE_NUM" \
    -o results/stylegan_celebahq_eyeglasses \
    --step_size 0.2 \
    --steps 40 \
    --attr_index 0 \
    --task attribute \
    --method ours

Usage

Important: For different given images (initial points), different step size and steps may be considered. In the following examples, we provide the parameters used in our paper. One could adjust them for better performance.

Specify Number of Samples

LATENT_CODE_NUM=1

Unconditional Modification

python edit.py \
    -m pggan_celebahq \
    -b boundaries/ \
    -n "$LATENT_CODE_NUM" \
    -o results/stylegan_celebahq_smile_editing \
    --step_size 0.2 \
    --steps 40 \
    --attr_index 0\
    --task attribute

Conditional Modification

python edit.py \
    -m pggan_celebahq \
    -b boundaries/ \
    -n "$LATENT_CODE_NUM" \
    -o results/stylegan_celebahq_smile_editing \
    --step_size 0.2 \
    --steps 40 \
    --attr_index 0\
    --condition\
    -i codes/pggan_cond/age.npy
    --task attribute

Head pose

Pitch

python edit.py \
    -m stylegan_celebahq \
    -b boundaries/ \
    -n "$LATENT_CODE_NUM" \
    -o results/ \
    --task head_pose \
    --method ours \
    --step_size 0.01 \
    --steps 2000 \
    --attr_index 1\
    --condition\
    --direction -1 \
    --demo

Yaw

python edit.py \
    -m stylegan_celebahq \
    -b boundaries/ \
    -n "$LATENT_CODE_NUM" \
    -o results/ \
    --task head_pose \
    --method ours \
    --step_size 0.1 \
    --steps 200 \
    --attr_index 0\
    --condition\
    --direction 1\
    --demo

Landmarks

Parameters for reference: (attr_index, step_size, steps) (4: 0.005 400) (5: 0.01 100), (6: 0.1 200), (8 0.1 200)

CUDA_VISIBLE_DEVICES=0 python edit.py \
    -m stylegan_celebahq \
    -b boundaries/ \
    -n "$LATENT_CODE_NUM" \
    -o results/ \
    --task landmark \
    --method ours \
    --step_size 0.1 \
    --steps 200 \
    --attr_index 6\
    --condition\
    --direction 1 \
    --demo

Generate Balanced Data

This a templeate showing how we generated balanced data for attribute manipulation (16 attributes in our internal experiments). You can modify it to fit your task better. Please first refer to here and replace YOUR_TASK_MODEL with your own classification model, and then run:

NUM=500000
CUDA_VISIBLE_DEVICES=0 python generate_balanced_data.py -m stylegan_celebahq \
    -o ./generated_data -K ./generated_data/indices.pkl -n "$NUM" -SI 0 --no_generated_imgs

Evaluations

TO-DO

  • Basic usage
  • Prerequisites
  • How to generate data
  • How to evaluate

Acknowledgment

This code is built upon InterfaceGAN

Owner
Hui-Po Wang
Interested in ML/DL/CV domains. A PhD student at CISPA, Germany.
Hui-Po Wang
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
Winners of the Facebook Image Similarity Challenge

Winners of the Facebook Image Similarity Challenge

DrivenData 111 Jan 05, 2023
Crossover Learning for Fast Online Video Instance Segmentation (ICCV 2021)

TL;DR: CrossVIS (Crossover Learning for Fast Online Video Instance Segmentation) proposes a novel crossover learning paradigm to fully leverage rich c

Hust Visual Learning Team 79 Nov 25, 2022
The official repo for OC-SORT: Observation-Centric SORT on video Multi-Object Tracking. OC-SORT is simple, online and robust to occlusion/non-linear motion.

OC-SORT Observation-Centric SORT (OC-SORT) is a pure motion-model-based multi-object tracker. It aims to improve tracking robustness in crowded scenes

Jinkun Cao 325 Jan 05, 2023
A DeepStack custom model for detecting common objects in dark/night images and videos.

DeepStack_ExDark This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API for d

MOSES OLAFENWA 98 Dec 24, 2022
Just Randoms Cats with python

Random-Cat Just Randoms Cats with python.

OriCode 2 Dec 21, 2021
Revealing and Protecting Labels in Distributed Training

Revealing and Protecting Labels in Distributed Training

Google Interns 0 Nov 09, 2022
Public Code for NIPS submission SimiGrad: Fine-Grained Adaptive Batching for Large ScaleTraining using Gradient Similarity Measurement

Public code for NIPS submission "SimiGrad: Fine-Grained Adaptive Batching for Large Scale Training using Gradient Similarity Measurement" This repo co

Heyang Qin 0 Oct 13, 2021
Experiments with Fourier layers on simulation data.

Factorized Fourier Neural Operators This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fo

Alasdair Tran 57 Dec 25, 2022
Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai

Coursera-deep-learning-specialization - Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks an

Aman Chadha 1.7k Jan 08, 2023
Using deep learning to predict gene structures of the coding genes in DNA sequences of Arabidopsis thaliana

DeepGeneAnnotator: A tool to annotate the gene in the genome The master thesis of the "Using deep learning to predict gene structures of the coding ge

Ching-Tien Wang 3 Sep 09, 2022
Level Based Customer Segmentation

level_based_customer_segmentation Level Based Customer Segmentation Persona Veri Seti kullanılarak müşteri segmentasyonu yapılmıştır. KOLONLAR : PRICE

Buse Yıldırım 6 Dec 21, 2021
Real-Time High-Resolution Background Matting

Real-Time High-Resolution Background Matting Official repository for the paper Real-Time High-Resolution Background Matting. Our model requires captur

Peter Lin 6.1k Jan 03, 2023
Le dataset des images du projet d'IA de 2021

face-mask-dataset-ilc-2021 Le dataset des images du projet d'IA de 2021, Indiquez vos id git dans la issue pour les droits TL;DR: Choisir 200 images J

7 Nov 15, 2021
Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations"

Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations" this repository is maintained by bo

Yuhan Liu 24 Nov 29, 2022
The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Generative Modeling with Optimal Transport Maps The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal

Litu Rout 30 Dec 22, 2022
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023
Histology images query (unsupervised)

110-1-NTU-DBME5028-Histology-images-query Final Project: Histology images query (unsupervised) Kaggle: https://www.kaggle.com/c/histology-images-query

1 Jan 05, 2022
Facial expression detector

A tensorflow convolutional neural network model to detect facial expressions.

Carlos Tardón Rubio 5 Apr 20, 2022
ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation

ST++ This is the official PyTorch implementation of our paper: ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation. Lihe Ya

Lihe Yang 147 Jan 03, 2023