Experiments with Fourier layers on simulation data.

Overview

Teaser

Factorized Fourier Neural Operators

This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fourier Neural Operators.

The Fourier Neural Operator (FNO) is a learning-based method for efficiently simulating partial differential equations. We propose the Factorized Fourier Neural Operator (F-FNO) that allows much better generalization with deeper networks. With a careful combination of the Fourier factorization, weight sharing, the Markov property, and residual connections, F-FNOs achieve a six-fold reduction in error on the most turbulent setting of the Navier-Stokes benchmark dataset. We show that our model maintains an error rate of 2% while still running an order of magnitude faster than a numerical solver, even when the problem setting is extended to include additional contexts such as viscosity and time-varying forces. This enables the same pretrained neural network to model vastly different conditions.

Getting Started

# Set up pyenv and pin python version to 3.9.7
curl https://pyenv.run | bash
# Configure our shell's environment for pyenv
pyenv install 3.9.7
pyenv local 3.9.7

# Set up poetry
curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/install-poetry.py | python -
export PATH="$HOME/.local/bin:$PATH"

# Install all python dependencies
poetry install
source .venv/bin/activate # or: poetry shell
# If we need to use Jupyter notebooks
python -m ipykernel install --user --name fourierflow --display-name "fourierflow"
# Temp fix until allennlp has upgraded transformers dependencies to 4.11
poe update-transformers
# Manually reinstall Pytorch with CUDA 11.1 support
# Monitor poetry's support for pytorch here: https://github.com/python-poetry/poetry/issues/2613
poe install-torch-cuda11

# set default paths
cp example.env .env
# The environment variables in .env will be loaded automatically when running
# fourierflow train, but we can also load them manually in our terminal
export $(cat .env | xargs)

# Alternatively, you can pass the paths to the system using env vars, e.g.
FNO_DATA_ROOT=/My/Data/Location fourierflow

Navier Stokes Experiments

You can download all of our datasets and pretrained model as follows:

# Datasets (209GB)
wget --continue https://object-store.rc.nectar.org.au/v1/AUTH_c0e4d64401cf433fb0260d211c3f23f8/fourierflow/data.tar.gz
tar -zxvf data.tar.gz

# Pretrained models and results (30GB)
wget --continue https://object-store.rc.nectar.org.au/v1/AUTH_c0e4d64401cf433fb0260d211c3f23f8/fourierflow/experiments.tar.gz
tar -zxvf experiments.tar.gz

Alternatively, you can also generate the datasets from scratch:

# Download Navier Stokes datasets
fourierflow download fno

# Generate Navier Stokes on toruses with a different forcing function and
# viscosity for each sample. Takes 14 hours.
fourierflow generate navier-stokes --force random --cycles 2 --mu-min 1e-5 \
    --mu-max 1e-4 --steps 200 --delta 1e-4 \
    data/navier-stokes/random_force_mu.h5

# Generate Navier Stokes on toruses with a different time-varying forcing
# function and a different viscosity for each sample. Takes 21 hours.
fourierflow generate navier-stokes --force random --cycles 2 --mu-min 1e-5 \
    --mu-max 1e-4 --steps 200 --delta 1e-4 --varying-force \
    data/navier-stokes/random_varying_force_mu.h5

# If we decrease delta from 1e-4 to 1e-5, generating the same dataset would now
# take 10 times as long, while the difference between the solutions in step 20
# is only 0.04%.

Training and test commands:

# Reproducing SOA model on Navier Stokes from Li et al (2021).
fourierflow train --trial 0 experiments/navier_stokes_4/zongyi/4_layers/config.yaml

# Train with our best model
fourierflow train --trial 0 experiments/navier_stokes_4/markov/24_layers/config.yaml

# Get inference time on test set
fourierflow predict --trial 0 experiments/navier_stokes_4/markov/24_layers/config.yaml

Visualization commands:

# Create all plots and tables for paper
fourierflow plot layer
fourierflow plot complexity
fourierflow plot table-3

# Create the flow animation for presentation
fourierflow plot flow

# Create plots for the poster
fourierflow plot poster
Owner
Alasdair Tran
Just another collection of fermions and bosons.
Alasdair Tran
Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers (arXiv2021)

Polyp-PVT by Bo Dong, Wenhai Wang, Deng-Ping Fan, Jinpeng Li, Huazhu Fu, & Ling Shao. This repo is the official implementation of "Polyp-PVT: Polyp Se

Deng-Ping Fan 102 Jan 05, 2023
Improving 3D Object Detection with Channel-wise Transformer

"Improving 3D Object Detection with Channel-wise Transformer" Thanks for the OpenPCDet, this implementation of the CT3D is mainly based on the pcdet v

Hualian Sheng 107 Dec 20, 2022
Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

SMDD-Synthetic-Face-Morphing-Attack-Detection-Development-dataset Official repository of the paper Privacy-friendly Synthetic Data for the Development

10 Dec 12, 2022
MERLOT: Multimodal Neural Script Knowledge Models

merlot MERLOT: Multimodal Neural Script Knowledge Models MERLOT is a model for learning what we are calling "neural script knowledge" -- representatio

Rowan Zellers 190 Dec 22, 2022
Code for "ATISS: Autoregressive Transformers for Indoor Scene Synthesis", NeurIPS 2021

ATISS: Autoregressive Transformers for Indoor Scene Synthesis This repository contains the code that accompanies our paper ATISS: Autoregressive Trans

138 Dec 22, 2022
Replication of Pix2Seq with Pretrained Model

Pretrained-Pix2Seq We provide the pre-trained model of Pix2Seq. This version contains new data augmentation. The model is trained for 300 epochs and c

peng gao 51 Nov 22, 2022
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022
Machine Learning Time-Series Platform

cesium: Open-Source Platform for Time Series Inference Summary cesium is an open source library that allows users to: extract features from raw time s

632 Dec 26, 2022
PyTorch Implementation of Region Similarity Representation Learning (ReSim)

ReSim This repository provides the PyTorch implementation of Region Similarity Representation Learning (ReSim) described in this paper: @Article{xiao2

Tete Xiao 74 Jan 03, 2023
Code for the ICASSP-2021 paper: Continuous Speech Separation with Conformer.

Continuous Speech Separation with Conformer Introduction We examine the use of the Conformer architecture for continuous speech separation. Conformer

Sanyuan Chen (陈三元) 81 Nov 28, 2022
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
BboxToolkit is a tiny library of special bounding boxes.

BboxToolkit is a light codebase collecting some practical functions for the special-shape detection, such as oriented detection

jbwang1997 73 Jan 01, 2023
Get 2D point positions (e.g., facial landmarks) projected on 3D mesh

points2d_projection_mesh Input 2D points (e.g. facial landmarks) on an image Camera parameters (extrinsic and intrinsic) of the image Aligned 3D mesh

5 Dec 08, 2022
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022
Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

4 Feb 03, 2022
Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Hierarchical Metadata-Aware Document Categorization under Weak Supervision This project provides a weakly supervised framework for hierarchical metada

Yu Zhang 53 Sep 17, 2022
[CVPR 2022] Official Pytorch code for OW-DETR: Open-world Detection Transformer

OW-DETR: Open-world Detection Transformer (CVPR 2022) [Paper] Akshita Gupta*, Sanath Narayan*, K J Joseph, Salman Khan, Fahad Shahbaz Khan, Mubarak Sh

Akshita Gupta 127 Dec 27, 2022
The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".

LEAR The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction". **The code is in the "master

杨攀 93 Jan 07, 2023
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021
A collection of implementations of deep domain adaptation algorithms

Deep Transfer Learning on PyTorch This is a PyTorch library for deep transfer learning. We divide the code into two aspects: Single-source Unsupervise

Yongchun Zhu 647 Jan 03, 2023