Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders

Overview

Adversarial Autoencoders (AAE)

  • Tensorflow implementation of Adversarial Autoencoders (ICLR 2016)
  • Similar to variational autoencoder (VAE), AAE imposes a prior on the latent variable z. Howerver, instead of maximizing the evidence lower bound (ELBO) like VAE, AAE utilizes a adversarial network structure to guides the model distribution of z to match the prior distribution.
  • This repository contains reproduce of several experiments mentioned in the paper.

Requirements

Implementation details

  • All the models of AAE are defined in src/models/aae.py.
  • Model corresponds to fig 1 and 3 in the paper can be found here: train and test.
  • Model corresponds to fig 6 in the paper can be found here: train and test.
  • Model corresponds to fig 8 in the paper can be found here: train and test.
  • Examples of how to use AAE models can be found in experiment/aae_mnist.py.
  • Encoder, decoder and all discriminators contain two fully connected layers with 1000 hidden units and RelU activation function. Decoder and all discriminators contain an additional fully connected layer for output.
  • Images are normalized to [-1, 1] before fed into the encoder and tanh is used as the output nonlinear of decoder.
  • All the sub-networks are optimized by Adam optimizer with beta1 = 0.5.

Preparation

  • Download the MNIST dataset from here.
  • Setup path in experiment/aae_mnist.py: DATA_PATH is the path to put MNIST dataset. SAVE_PATH is the path to save output images and trained model.

Usage

The script experiment/aae_mnist.py contains all the experiments shown here. Detailed usage for each experiment will be describe later along with the results.

Argument

  • --train: Train the model of Fig 1 and 3 in the paper.
  • --train_supervised: Train the model of Fig 6 in the paper.
  • --train_semisupervised: Train the model of Fig 8 in the paper.
  • --label: Incorporate label information in the adversarial regularization (Fig 3 in the paper).
  • --generate: Randomly sample images from trained model.
  • --viz: Visualize latent space and data manifold (only when --ncode is 2).
  • --supervise: Sampling from supervised model (Fig 6 in the paper) when --generate is True.
  • --load: The epoch ID of pre-trained model to be restored.
  • --ncode: Dimension of code. Default: 2
  • --dist_type: Type of the prior distribution used to impose on the hidden codes. Default: gaussian. gmm for Gaussian mixture distribution.
  • --noise: Add noise to encoder input (Gaussian with std=0.6).
  • --lr: Initial learning rate. Default: 2e-4.
  • --dropout: Keep probability for dropout. Default: 1.0.
  • --bsize: Batch size. Default: 128.
  • --maxepoch: Max number of epochs. Default: 100.
  • --encw: Weight of autoencoder loss. Default: 1.0.
  • --genw: Weight of z generator loss. Default: 6.0.
  • --disw: Weight of z discriminator loss. Default: 6.0.
  • --clsw: Weight of semi-supervised loss. Default: 1.0.
  • --ygenw: Weight of y generator loss. Default: 6.0.
  • --ydisw: Weight of y discriminator loss. Default: 6.0.

1. Adversarial Autoencoder

Architecture

Architecture Description
The top row is an autoencoder. z is sampled through the re-parameterization trick discussed in variational autoencoder paper. The bottom row is a discriminator to separate samples generate from the encoder and samples from the prior distribution p(z).

Hyperparameters

name value
Reconstruction Loss Weight 1.0
Latent z G/D Loss Weight 6.0 / 6.0
Batch Size 128
Max Epoch 400
Learning Rate 2e-4 (initial) / 2e-5 (100 epochs) / 2e-6 (300 epochs)

Usage

  • Training. Summary, randomly sampled images and latent space during training will be saved in SAVE_PATH.
python aae_mnist.py --train \
  --ncode CODE_DIM \
  --dist_type TYPE_OF_PRIOR (`gaussian` or `gmm`)
  • Random sample data from trained model. Image will be saved in SAVE_PATH with name generate_im.png.
python aae_mnist.py --generate \
  --ncode CODE_DIM \
  --dist_type TYPE_OF_PRIOR (`gaussian` or `gmm`)\
  --load RESTORE_MODEL_ID
  • Visualize latent space and data manifold (only when code dim = 2). Image will be saved in SAVE_PATH with name generate_im.png and latent.png. For Gaussian distribution, there will be one image for data manifold. For mixture of 10 2D Gaussian, there will be 10 images of data manifold for each component of the distribution.
python aae_mnist.py --viz \
  --ncode CODE_DIM \
  --dist_type TYPE_OF_PRIOR (`gaussian` or `gmm`)\
  --load RESTORE_MODEL_ID

Result

  • For 2D Gaussian, we can see sharp transitions (no gaps) as mentioned in the paper. Also, from the learned manifold, we can see almost all the sampled images are readable.
  • For mixture of 10 Gaussian, I just uniformly sample images in a 2D square space as I did for 2D Gaussian instead of sampling along the axes of the corresponding mixture component, which will be shown in the next section. We can see in the gap area between two component, it is less likely to generate good samples.
Prior Distribution Learned Coding Space Learned Manifold

2. Incorporating label in the Adversarial Regularization

Architecture

Architecture Description
The only difference from previous model is that the one-hot label is used as input of encoder and there is one extra class for unlabeled data. For mixture of Gaussian prior, real samples are drawn from each components for each labeled class and for unlabeled data, real samples are drawn from the mixture distribution.

Hyperparameters

Hyperparameters are the same as previous section.

Usage

  • Training. Summary, randomly sampled images and latent space will be saved in SAVE_PATH.
python aae_mnist.py --train --label\
  --ncode CODE_DIM \
  --dist_type TYPE_OF_PRIOR (`gaussian` or `gmm`)
  • Random sample data from trained model. Image will be saved in SAVE_PATH with name generate_im.png.
python aae_mnist.py --generate --ncode 
   
     --label --dist_type 
    
      --load 
     

     
    
   
  • Visualize latent space and data manifold (only when code dim = 2). Image will be saved in SAVE_PATH with name generate_im.png and latent.png. For Gaussian distribution, there will be one image for data manifold. For mixture of 10 2D Gaussian, there will be 10 images of data manifold for each component of the distribution.
python aae_mnist.py --viz --label \
  --ncode CODE_DIM \
  --dist_type TYPE_OF_PRIOR (`gaussian` or `gmm`) \
  --load RESTORE_MODEL_ID

Result

  • Compare with the result in the previous section, incorporating labeling information provides better fitted distribution for codes.
  • The learned manifold images demonstrate that each Gaussian component corresponds to the one class of digit. However, the style representation is not consistently represented within each mixture component as shown in the paper. For example, the right most column of the first row experiment, the lower right of digit 1 tilt to left while the lower right of digit 9 tilt to right.
Number of Label Used Learned Coding Space Learned Manifold
Use full label
10k labeled data and 40k unlabeled data

3. Supervised Adversarial Autoencoders

Architecture

Architecture Description
The decoder takes code as well as a one-hot vector encoding the label as input. Then it forces the network learn the code independent of the label.

Hyperparameters

Usage

  • Training. Summary and randomly sampled images will be saved in SAVE_PATH.
python aae_mnist.py --train_supervised \
  --ncode CODE_DIM
  • Random sample data from trained model. Image will be saved in SAVE_PATH with name sample_style.png.
python aae_mnist.py  --generate --supervise\
  --ncode CODE_DIM \
  --load RESTORE_MODEL_ID

Result

  • The result images are generated by using the same code for each column and the same digit label for each row.
  • When code dimension is 2, we can see each column consists the same style clearly. But for dimension 10, we can hardly read some digits. Maybe there are some issues of implementation or the hyper-parameters are not properly picked, which makes the code still depend on the label.
Code Dim=2 Code Dim=10

4. Semi-supervised learning

Architecture

Architecture Description
The encoder outputs code z as well as the estimated label y. Encoder again takes code z and one-hot label y as input. A Gaussian distribution is imposed on code z and a Categorical distribution is imposed on label y. In this implementation, the autoencoder is trained by semi-supervised classification phase every ten training steps when using 1000 label images and the one-hot label y is approximated by output of softmax.

Hyperparameters

name value
Dimention of z 10
Reconstruction Loss Weight 1.0
Letant z G/D Loss Weight 6.0 / 6.0
Letant y G/D Loss Weight 6.0 / 6.0
Batch Size 128
Max Epoch 250
Learning Rate 1e-4 (initial) / 1e-5 (150 epochs) / 1e-6 (200 epochs)

Usage

  • Training. Summary will be saved in SAVE_PATH.
python aae_mnist.py \
  --ncode 10 \
  --train_semisupervised \
  --lr 2e-4 \
  --maxepoch 250

Result

  • 1280 labels are used (128 labeled images per class)

learning curve for training set (computed only on the training set with labels) train

learning curve for testing set

  • The accuracy on testing set is 97.10% around 200 epochs. valid
Owner
Qian Ge
ECE PhD candidate at NCSU
Qian Ge
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
Blender Add-On for slicing meshes with planes

MeshSlicer Blender Add-On for slicing meshes with multiple overlapping planes at once. This is a simple Blender addon to slice a silmple mesh with mul

52 Dec 12, 2022
In Search of Probeable Generalization Measures

In Search of Probeable Generalization Measures Exciting News! In Search of Probeable Generalization Measures has been accepted to the International Co

Mahdi S. Hosseini 6 Sep 11, 2022
Minimal But Practical Image Classifier Pipline Using Pytorch, Finetune on ResNet18, Got 99% Accuracy on Own Small Datasets.

PyTorch Image Classifier Updates As for many users request, I released a new version of standared pytorch immage classification example at here: http:

JinTian 106 Nov 06, 2022
Binary Stochastic Neurons in PyTorch

Binary Stochastic Neurons in PyTorch http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html https://github.com/pytorch/examples/tree/master/mnis

Onur Kaplan 54 Nov 21, 2022
A light weight data augmentation tool for training CNNs and Viola Jones detectors

hey-daug A light weight data augmentation tool for training CNNs and Viola Jones detectors (Haar Cascades). This tool inflates your data by up to six

Jaiyam Sharma 2 Nov 23, 2019
SAN for Product Attributes Prediction

SAN Heterogeneous Star Graph Attention Network for Product Attributes Prediction This repository contains the official PyTorch implementation for ADVI

Xuejiao Zhao 9 Dec 12, 2022
CTF challenges and write-ups for MicroCTF 2021.

MicroCTF 2021 Qualifications About This repository contains CTF challenges and official write-ups for MicroCTF 2021 Qualifications. License Distribute

Shellmates 12 Dec 27, 2022
yolox_backbone is a deep-learning library and is a collection of YOLOX Backbone models.

YOLOX-Backbone yolox-backbone is a deep-learning library and is a collection of YOLOX backbone models. Install pip install yolox-backbone Load a Pret

Yonghye Kwon 21 Dec 28, 2022
Generating Digital Painting Lighting Effects via RGB-space Geometry (SIGGRAPH2020/TOG2020)

Project PaintingLight PaintingLight is a project conducted by the Style2Paints team, aimed at finding a method to manipulate the illumination in digit

651 Dec 29, 2022
Intrusion Detection System using ensemble learning (machine learning)

IDS-ML implementation of an intrusion detection system using ensemble machine learning methods Data set This project is carried out using the UNSW-15

4 Nov 25, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022
TensorFlow GNN is a library to build Graph Neural Networks on the TensorFlow platform.

TensorFlow GNN This is an early (alpha) release to get community feedback. It's under active development and we may break API compatibility in the fut

889 Dec 30, 2022
PyVideoAI: Action Recognition Framework

This reposity contains official implementation of: Capturing Temporal Information in a Single Frame: Channel Sampling Strategies for Action Recognitio

Kiyoon Kim 22 Dec 29, 2022
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

Daniel Bourke 3.4k Jan 07, 2023
Load What You Need: Smaller Multilingual Transformers for Pytorch and TensorFlow 2.0.

Smaller Multilingual Transformers This repository shares smaller versions of multilingual transformers that keep the same representations offered by t

Geotrend 79 Dec 28, 2022
Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

Robin Jia 38 Oct 16, 2022
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
My coursework for Machine Learning (2021 Spring) at National Taiwan University (NTU)

Machine Learning 2021 Machine Learning (NTU EE 5184, Spring 2021) Instructor: Hung-yi Lee Course Website : (https://speech.ee.ntu.edu.tw/~hylee/ml/202

100 Dec 26, 2022