CTF Challenge for CSAW Finals 2021

Overview

Terminal Velocity

Misc CTF Challenge for CSAW Finals 2021

This is a challenge I've had in mind for almost 15 years and never got around to building until now. It (ab)uses a number of terminal escape codes to trigger both legitimate and scary and potentially dangerous terminal features, many of which are enabled by default in modern terminals! While a number of more serious exploits were patched in terminals since this original idea (it used to be trivial to kill many terminals with such escapes as "move cursor left 2^32 times or other similar ridiculous instructions), but most of the remaining shenanigans are merely abusing "legitimate" features that maybe are undesirable when simply viewing a text file or connecting to a network socket.

It's worth noting that because this service uses the usual netcat connection from clients, it will be line-buffered. This prevents some more egregious abuse of terminal escapes and requires some slight trickery to receive the return escape codes as hidden parts of existing responses during the various "press enter to continue" or similar prompts. Using something like telnet or ssh would fix this and allow for even more dangerous terminal manipulations.

Part of the goal of this challenge is to encourage people to be a bit more careful even when taking actions they might otherwise consider benign. Text should be considered harmful.

Deploying / Running

$ docker build -t terminal .
$ docker run -it -p 3535:3535 terminal

Or just run python3 service.py and connect to your local machine on port 3535.

Solutions

Two play-testers provided (partial) solutions which needs some tweaks for the final updates. This writeup covers the main tasks:

Level 0

When you first connect to the server you simply see a password (Level 0 Is Really Easy) which when pasted is indeed, correct.

The only tricky thing is if you try to sniff the connection or use a non-terminal to access it, you'll see that the password is originally something else that is overwritten.

Screen Check

After solving level 0, you will be asked "What is the proper screen size"? Some people may simply know the default terminal size is 80x24 and adjust accordingly, but if not, the server helpfully tells you whether your terminal was too big or too small after verifying that it can read your screen dimensions. If you're not running a real terminal, you'll need to learn to fake the correct response.

Level 1

Level one simply prints the password out in a black text on a black background. You can simply copy/paste it from the terminal but if you try to view it from the raw network traffic you will see that it is interspersed with unrelated escape codes that you have to filter out.

Correct pass: G1V3M3TH3N3XTL3V3L

Feature Check: Iconify

The next check will attempt to icnoify your terminal and query the status of the terminal (it also has the side effect of querying a user's iTerm current profile name). Correct approaches to solving this usually involve analyzing the query string that is sent and finding what is being looked up. Note that some VT100 references will give misleading answers and the oracle should always be consulted (if people get stuck I'd give this as a hint out since it's a better reference. All references are painfully hard to search though which is hilarious.)

Note: if you don't have a terminal capable of following this live (Terminal.app is the only one I know that does it all correctly) and you don't want to write a terminal emulator/manual interaction script (definitely the right approach for what's coming next), then you can work around it by just pressing backspace twice and entering 2t before pressing enter.

Level 2

Level two is similar except the line of correct text is erased after rendered. An emulator that simulates specific character drawing will be able to recover the text, or a filter that blocks the "erase" escape codes (though there are several used) can work here.

Correct password: HalfwayDone

Level 3

Level three is pretty nasty (the user is warned though!)

It will attempt to do all sorts of nasty things to their terminal including printing locking the prompt, crashing it with bogus operations. One printer accidentally spewed out paper and one Windows machine blue screened during the testing of these features, so this can be tough! (The printer bug was fixed with all the aforementioned iTerm detection above ). By this point users should be strongly considering not directly interacting with the port but using pwntools with heavy filtering or some other method. (Fun fact, Windows terminal actually looks super robust against these sorts of shenanigans and the developers even built an entire fuzzing harness that really needs to be run against all other major browsers which still have many bugs).

Anyway, for players who have been building a very simply terminal emulator to this point, just having the ability to emulate three different cases of move and draw commands will let them re-create the correct text for this level.

Correct password: BobTheBuilder

Level 4

The final level brings image formats! Yup, there are actually many different valid forms of images that can be displayed in terminals. Though, if I've done my job correctly, the previous level will have broken or rendered useless most of the terminals that otherwise could just show the images directly.

The three images that are displayed are:

  1. Simple base64 encoded file in iTerm image format
  2. A sixel and
  3. A Tektronix image

There are several different approaches/tools to solving the last two images. Just using a compatible terminal and separately cat'ing the file after extracting them from the session is sufficient.

xTerm has the only support for the final Tektronix image format I have found. When assembled, the images reveal the final passcode: PINEY_FLATS_TN_USA a random city with no meaning at all behind it.

Entering the final password reveals the flag for the challenge!

Hopefully people have a lot more respect about what their terminals are capable of after working on this challenge and maybe even take more care when randomly connecting to servers on the internet.

Owner
Jordan
Jordan
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023
UPSNet: A Unified Panoptic Segmentation Network

UPSNet: A Unified Panoptic Segmentation Network Introduction UPSNet is initially described in a CVPR 2019 oral paper. Disclaimer This repository is te

Uber Research 622 Dec 26, 2022
PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model

samplernn-pytorch A PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model. It's based on the reference implem

DeepSound 261 Dec 14, 2022
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023
This is an official implementation for "DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation"

DeciWatch: A Simple Baseline for 10× Efficient 2D and 3D Pose Estimation This repo is the official implementation of "DeciWatch: A Simple Baseline for

117 Dec 24, 2022
Active window border replacement for window managers.

xborder Active window border replacement for window managers. Usage git clone https://github.com/deter0/xborder cd xborder chmod +x xborders ./xborder

deter 250 Dec 30, 2022
D2LV: A Data-Driven and Local-Verification Approach for Image Copy Detection

Facebook AI Image Similarity Challenge: Matching Track —— Team: imgFp This is the source code of our 3rd place solution to matching track of Image Sim

16 Dec 25, 2022
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Sehoon Kim 139 Dec 27, 2022
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

3DIAS_Pytorch This repository contains the official code to reproduce the results from the paper: 3DIAS: 3D Shape Reconstruction with Implicit Algebra

Mohsen Yavartanoo 21 Dec 12, 2022
ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA: Distant Supervision for Low-Resource Named Entity Recognition ANEA is a tool to automatically annotate named entities in unlabeled text based on

Saarland University Spoken Language Systems Group 15 Mar 30, 2022
TVNet: Temporal Voting Network for Action Localization

TVNet: Temporal Voting Network for Action Localization This repo holds the codes of paper: "TVNet: Temporal Voting Network for Action Localization". P

hywang 5 Jul 26, 2022
Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord.

numpy2tfrecord Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord. Installation

Ryo Yonetani 2 Jan 16, 2022
This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.

Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change

Biorobotics Lab 5 Oct 12, 2022
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

2.6k Jan 04, 2023
Spectrum Surveying: Active Radio Map Estimation with Autonomous UAVs

Spectrum Surveying: The Python code in this repository implements the simulations and plots the figures described in the paper “Spectrum Surveying: Ac

Universitetet i Agder 2 Dec 06, 2022
RLBot Python bindings for the Rust crate rl_ball_sym

RLBot Python bindings for rl_ball_sym 0.6 Prerequisites: Rust & Cargo Build Tools for Visual Studio RLBot - Verify that the file %localappdata%\RLBotG

Eric Veilleux 2 Nov 25, 2022
Re-implementation of the vector capsule with dynamic routing

VectorCapsule Re-implementation of the vector capsule with dynamic routing We implement the vector capsule and dynamic routing via graph neural networ

ZhenchaoTang 10 Feb 10, 2022
Roger Labbe 13k Dec 29, 2022
Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

EPSR (Enhanced Perceptual Super-resolution Network) paper This repo provides the test code, pretrained models, and results on benchmark datasets of ou

Subeesh Vasu 78 Nov 19, 2022
PAthological QUpath Obsession - QuPath and Python conversations

PAQUO: PAthological QUpath Obsession Welcome to paquo 👋 , a library for interacting with QuPath from Python. paquo's goal is to provide a pythonic in

Bayer AG 60 Dec 31, 2022