TVNet: Temporal Voting Network for Action Localization

Related tags

Deep LearningTVNet
Overview

TVNet: Temporal Voting Network for Action Localization

This repo holds the codes of paper: "TVNet: Temporal Voting Network for Action Localization".

Paper Introduction

Temporal action localization is a vital task in video understranding. In this paper, we propose a Temporal Voting Network (TVNet) for action localization in untrimmed videos. This incorporates a novel Voting Evidence Module to locate temporal boundaries, more accurately, where temporal contextual evidence is accumulated to predict frame-level probabilities of start and end action boundaries.

Dependencies

  • Python == 2.7
  • Tensorflow == 1.9.0
  • CUDA==10.1.105
  • GCC >= 5.4

Note that the PEM code from BMN is implemented in Pytorch==1.1.0 or 1.3.0

Data Preparation

Datasets

Our experiments is based on ActivityNet 1.3 and THUMOS14 datasets.

Feature for THUMOS14

You can download the feature on THUMOS14 at here GooogleDrive.

Place it into a folder named thumos_features inside ./data.

You also need to download the feature for PEM (from BMN) at GooogleDrive. Please put it into a folder named Thumos_feature_hdf5 inside ./TVNet-THUMOS14/data/thumos_features.

If everything goes well, you can get the folder architecture of ./TVNet-THUMOS14/data like this:

data                       
└── thumos_features                    
		├── Thumos_feature_dim_400              
		├── Thumos_feature_hdf5               
		├── features_train.npy 
		└── features_test.npy

Feature for ActivityNet 1.3

You can download the feature on ActivityNet 1.3 at here GoogleCloud. Please put csv_mean_100 directory into ./TVNet-ANET/data/activitynet_feature_cuhk/.

If everything goes well, you can get the folder architecture of ./TVNet-ANET/data like this:

data                        
└── activitynet_feature_cuhk                    
		    └── csv_mean_100

Run all steps

Run all steps on THUMOS14

cd TVNet-THUMOS14

Run the following script with all steps on THUMOS14:

bash do_all.sh

Note: If you use BlueCrystal 4, you can directly run the following script without any dependencies setup.

bash do_all_BC4.sh

Run all steps on ActivityNet 1.3

cd TVNet-ANET
bash do_all.sh  or  bash do_all_BC4.sh

Run steps separately

Take TVNet-THUMOS14 as an example:

cd TVNet-THUMOS14

1. Temporal evaluation module

python TEM_train.py
python TEM_test.py

2. Creat training data for voting evidence module

python VEM_create_windows.py --window_length L --window_stride S

L is the window length and S is the sliding stride. We generate training windows for length 10 with stride 5, and length 5 with stride 2.

3. Voting evidence module

python VEM_train.py --voting_type TYPE --window_length L --window_stride S
python VEM_test.py --voting_type TYPE --window_length L --window_stride S

TYPE should be start or end. We train and test models with window length 10 (stride 5) and window length 5 (stride 2) for start and end separately.

4. Proposal evaluation module from BMN

python PEM_train.py

5. Proposal generation

python proposal_generation.py

6. Post processing and detection

python post_postprocess.py

Results

THUMOS14

tIoU [email protected]
0.3 0.5724681814413137
0.4 0.5060844218403346
0.5 0.430414918823808
0.6 0.3297164845828022
0.7 0.202971546242546

ActivityNet 1.3

tIoU [email protected]
Average 0.3460396513933088
0.5 0.5135151163296395
0.75 0.34955648726767025
0.95 0.10121803584836778

Reference

This implementation borrows from:

BSN: BSN-Boundary-Sensitive-Network

TEM_train/test.py -- for the TEM module we used in our paper
load_dataset.py -- borrow the part which load data for TEM

BMN: BMN-Boundary-Matching-Network

PEM_train.py -- for the PEM module we used in our paper

G-TAD: Sub-Graph Localization for Temporal Action Detection

post_postprocess.py -- for the multicore process to generate detection

Our main contribution is in:

VEM_create_windows.py -- generate training annotations for Voting Evidence Module (VEM)

VEM_train.py -- train Voting Evidence Module (VEM)

VEM_test.py -- test Voting Evidence Module (VEM)
Owner
hywang
hywang
💡 Learnergy is a Python library for energy-based machine learning models.

Learnergy: Energy-based Machine Learners Welcome to Learnergy. Did you ever reach a bottleneck in your computational experiments? Are you tired of imp

Gustavo Rosa 57 Nov 17, 2022
Embodied Intelligence via Learning and Evolution

Embodied Intelligence via Learning and Evolution This is the code for the paper Embodied Intelligence via Learning and Evolution Agrim Gupta, Silvio S

Agrim Gupta 111 Dec 13, 2022
Source codes for the paper "Local Additivity Based Data Augmentation for Semi-supervised NER"

LADA This repo contains codes for the following paper: Jiaao Chen*, Zhenghui Wang*, Ran Tian, Zichao Yang, Diyi Yang: Local Additivity Based Data Augm

GT-SALT 36 Dec 02, 2022
NeuralForecast is a Python library for time series forecasting with deep learning models

NeuralForecast is a Python library for time series forecasting with deep learning models. It includes benchmark datasets, data-loading utilities, evaluation functions, statistical tests, univariate m

Nixtla 1.1k Jan 03, 2023
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

Liu Songtao 1.4k Dec 21, 2022
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Ritchie Ng 9.2k Jan 02, 2023
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

12 Oct 28, 2022
A Real-World Benchmark for Reinforcement Learning based Recommender System

RL4RS: A Real-World Benchmark for Reinforcement Learning based Recommender System RL4RS is a real-world deep reinforcement learning recommender system

121 Dec 01, 2022
Simple ONNX operation generator. Simple Operation Generator for ONNX.

sog4onnx Simple ONNX operation generator. Simple Operation Generator for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools Key concept V

Katsuya Hyodo 6 May 15, 2022
nn_builder lets you build neural networks with less boilerplate code

nn_builder lets you build neural networks with less boilerplate code. You specify the type of network you want and it builds it. Install pip install n

Petros Christodoulou 157 Nov 20, 2022
a general-purpose Transformer based vision backbone

Swin Transformer By Ze Liu*, Yutong Lin*, Yue Cao*, Han Hu*, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. This repo is the official implement

Microsoft 9.9k Jan 08, 2023
SuperSDR: multiplatform KiwiSDR + CAT transceiver integrator

SuperSDR SuperSDR integrates a realtime spectrum waterfall and audio receive from any KiwiSDR around the world, together with a local (or remote) cont

Marco Cogoni 30 Nov 29, 2022
Source code, data, and evaluation details for “Cross-Lingual Citations in English Papers: A Large-Scale Analysis of Prevalence, Formation, and Ramifications”

Analysis of cross-lingual citations in English papers Contents initial_analysis Source code, data, and evaluation details as published at ICADL2020 ci

Tarek Saier 1 Oct 27, 2022
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily

GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily Abstract Graph Neural Networks (GNNs) are widely used on a

10 Dec 20, 2022
Artificial Intelligence search algorithm base on Pacman

Pacman Search Artificial Intelligence search algorithm base on Pacman Source The Pacman Projects by the University of California, Berkeley. Layouts Di

Day Fundora 6 Nov 17, 2022
Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Learning Domain Invariant Representations in Goal-conditioned Block MDPs Beining Han, Chongyi Zheng, Harris Chan, Keiran Paster, Michael R. Zhang, Jim

Chongyi Zheng 3 Apr 12, 2022
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 647 Jan 04, 2023
Code for binary and multiclass model change active learning, with spectral truncation implementation.

Model Change Active Learning Paper (To Appear) Python code for doing active learning in graph-based semi-supervised learning (GBSSL) paradigm. Impleme

Kevin Miller 1 Jul 24, 2022
A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

Evan 1.3k Jan 02, 2023
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function

With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the momen

ChemEngAI 40 Dec 27, 2022