LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation

Overview

LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation

python-image pytorch-image

Table of Contents:

Introduction

This project contains the code (Note: The code is test in the environment with python=3.6, cuda=9.0, PyTorch-0.4.1, also support Pytorch-0.4.1+) for: LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation by Yu Wang.

The extensive computational burden limits the usage of CNNs in mobile devices for dense estimation tasks, a.k.a semantic segmentation. In this paper, we present a lightweight network to address this problem, namely **LEDNet**, which employs an asymmetric encoder-decoder architecture for the task of real-time semantic segmentation.More specifically, the encoder adopts a ResNet as backbone network, where two new operations, channel split and shuffle, are utilized in each residual block to greatly reduce computation cost while maintaining higher segmentation accuracy. On the other hand, an attention pyramid network (APN) is employed in the decoder to further lighten the entire network complexity. Our model has less than 1M parameters, and is able to run at over 71 FPS on a single GTX 1080Ti GPU card. The comprehensive experiments demonstrate that our approach achieves state-of-the-art results in terms of speed and accuracy trade-off on Cityscapes dataset. and becomes an effective method for real-time semantic segmentation tasks.

Project-Structure

├── datasets  # contains all datasets for the project
|  └── cityscapes #  cityscapes dataset
|  |  └── gtCoarse #  Coarse cityscapes annotation
|  |  └── gtFine #  Fine cityscapes annotation
|  |  └── leftImg8bit #  cityscapes training image
|  └── cityscapesscripts #  cityscapes dataset label convert scripts!
├── utils
|  └── dataset.py # dataloader for cityscapes dataset
|  └── iouEval.py # for test 'iou mean' and 'iou per class'
|  └── transform.py # data preprocessing
|  └── visualize.py # Visualize with visdom 
|  └── loss.py # loss function 
├── checkpoint
|  └── xxx.pth # pretrained models encoder form ImageNet
├── save
|  └── xxx.pth # trained models form scratch 
├── imagenet-pretrain
|  └── lednet_imagenet.py # 
|  └── main.py # 
├── train
|  └── lednet.py  # model definition for semantic segmentation
|  └── main.py # train model scripts
├── test
|  |  └── dataset.py 
|  |  └── lednet.py # model definition
|  |  └── lednet_no_bn.py # Remove the BN layer in model definition
|  |  └── eval_cityscapes_color.py # Test the results to generate RGB images
|  |  └── eval_cityscapes_server.py # generate result uploaded official server
|  |  └── eval_forward_time.py # Test model inference time
|  |  └── eval_iou.py 
|  |  └── iouEval.py 
|  |  └── transform.py 

Installation

  • Python 3.6.x. Recommended using Anaconda3
  • Set up python environment
pip3 install -r requirements.txt
  • Env: PyTorch_0.4.1; cuda_9.0; cudnn_7.1; python_3.6,

  • Clone this repository.

git clone https://github.com/xiaoyufenfei/LEDNet.git
cd LEDNet-master

Datasets

├── leftImg8bit
│   ├── train
│   ├──  val
│   └── test
├── gtFine
│   ├── train
│   ├──  val
│   └── test
├── gtCoarse
│   ├── train
│   ├── train_extra
│   └── val

Training-LEDNet

  • For help on the optional arguments you can run: python main.py -h

  • By default, we assume you have downloaded the cityscapes dataset in the ./data/cityscapes dir.

  • To train LEDNet using the train/main.py script the parameters listed in main.py as a flag or manually change them.

python main.py --savedir logs --model lednet --datadir path/root_directory/  --num-epochs xx --batch-size xx ...

Resuming-training-if-decoder-part-broken

  • for help on the optional arguments you can run: python main.py -h
python main.py --savedir logs --name lednet --datadir path/root_directory/  --num-epochs xx --batch-size xx --decoder --state "../save/logs/model_best_enc.pth.tar"...

Testing

  • the trained models of training process can be found at here. This may not be the best one, you can train one from scratch by yourself or Fine-tuning the training decoder with model encoder pre-trained on ImageNet, For instance
more details refer ./test/README.md

Results

  • Please refer to our article for more details.
Method Dataset Fine Coarse IoU_cla IoU_cat FPS
LEDNet cityscapes yes yes 70.6​% 87.1​%​ 70​+​

qualitative segmentation result examples:

Citation

If you find this code useful for your research, please use the following BibTeX entry.

 @article{wang2019lednet,
  title={LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation},
  author={Wang, Yu and Zhou, Quan and Liu, Jia and Xiong,Jian and Gao, Guangwei and Wu, Xiaofu, and Latecki Jan Longin},
  journal={arXiv preprint arXiv:1905.02423},
  year={2019}
}

Tips

  • Limited by GPU resources, the project results need to be further improved...
  • It is recommended to pre-train Encoder on ImageNet and then Fine-turning Decoder part. The result will be better.

Reference

  1. Deep residual learning for image recognition
  2. Enet: A deep neural network architecture for real-time semantic segmentation
  3. Erfnet: Efficient residual factorized convnet for real-time semantic segmentation
  4. Shufflenet: An extremely efficient convolutional neural network for mobile devices
Owner
Yu Wang
I am a graduate student in CV, my research areas center around computer vision and deep learning.
Yu Wang
RANZCR-CLiP 7th Place Solution

RANZCR-CLiP 7th Place Solution This repository is WIP. (18 Mar 2021) Installation git clone https://github.com/analokmaus/kaggle-ranzcr-clip-public.gi

Hiroshechka Y 21 Oct 22, 2022
yolov5 deepsort 行人 车辆 跟踪 检测 计数

yolov5 deepsort 行人 车辆 跟踪 检测 计数 实现了 出/入 分别计数。 默认是 南/北 方向检测,若要检测不同位置和方向,可在 main.py 文件第13行和21行,修改2个polygon的点。 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车。 检测类别可在 detect

554 Dec 30, 2022
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022
StyleGAN2-ADA - Official PyTorch implementation

Abstract: Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmenta

NVIDIA Research Projects 3.2k Dec 30, 2022
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Maha 490 Dec 15, 2022
Open-source Monocular Python HawkEye for Tennis

Tennis Tracking 🎾 Objectives Track the ball Detect court lines Detect the players To track the ball we used TrackNet - deep learning network for trac

ArtLabs 188 Jan 08, 2023
A Machine Teaching Framework for Scalable Recognition

MEMORABLE This repository contains the source code accompanying our ICCV 2021 paper. A Machine Teaching Framework for Scalable Recognition Pei Wang, N

2 Dec 08, 2021
Mscp jamf - Build compliance in jamf

mscp_jamf Build compliance in Jamf. This will build the following xml pieces to

Bob Gendler 3 Jul 25, 2022
UNet model with VGG11 encoder pre-trained on Kaggle Carvana dataset

TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation By Vladimir Iglovikov and Alexey Shvets Introduction TernausNet is

Vladimir Iglovikov 1k Dec 28, 2022
🛰️ List of earth observation companies and job sites

Earth Observation Companies & Jobs source Portals & Jobs Geospatial Geospatial jobs newsletter: ~biweekly newsletter with geospatial jobs by Ali Ahmad

Dahn 64 Dec 27, 2022
[NeurIPS'21] Projected GANs Converge Faster

[Project] [PDF] [Supplementary] [Talk] This repository contains the code for our NeurIPS 2021 paper "Projected GANs Converge Faster" by Axel Sauer, Ka

798 Jan 04, 2023
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation This project attempted to implement the paper Putting NeRF on a

254 Dec 27, 2022
Implementation of paper "Towards a Unified View of Parameter-Efficient Transfer Learning"

A Unified Framework for Parameter-Efficient Transfer Learning This is the official implementation of the paper: Towards a Unified View of Parameter-Ef

Junxian He 216 Dec 29, 2022
DaReCzech is a dataset for text relevance ranking in Czech

Dataset DaReCzech is a dataset for text relevance ranking in Czech. The dataset consists of more than 1.6M annotated query-documents pairs,

Seznam.cz a.s. 8 Jul 26, 2022
To prepare an image processing model to classify the type of disaster based on the image dataset

Disaster Classificiation using CNNs bunnysaini/Disaster-Classificiation Goal To prepare an image processing model to classify the type of disaster bas

Bunny Saini 1 Jan 24, 2022
TANL: Structured Prediction as Translation between Augmented Natural Languages

TANL: Structured Prediction as Translation between Augmented Natural Languages Code for the paper "Structured Prediction as Translation between Augmen

98 Dec 15, 2022
The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition.

OverlapTransformer The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for

HAOMO.AI 136 Jan 03, 2023
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023
EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network arch

Zhaowei Cai 47 Dec 30, 2022
Official repository for the paper "Going Beyond Linear Transformers with Recurrent Fast Weight Programmers"

Recurrent Fast Weight Programmers This is the official repository containing the code we used to produce the experimental results reported in the pape

IDSIA 36 Nov 15, 2022