Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Overview

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Open in Streamlit Open In Colab

스크린샷 2021-07-04 오후 4 11 51

This project attempted to implement the paper Putting NeRF on a Diet (DietNeRF) in JAX/Flax. DietNeRF is designed for rendering quality novel views in few-shot learning scheme, a task that vanilla NeRF (Neural Radiance Field) struggles. To achieve this, the author coins Semantic Consistency Loss to supervise DietNeRF by prior knowledge from CLIP Vision Transformer. Such supervision enables DietNeRF to learn 3D scene reconstruction with CLIP's prior knowledge on 2D views.

Besides this repo, you can check our write-up and demo here:

🤩 Demo

  1. You can check out our demo in Hugging Face Space
  2. Or you can set up our Streamlit demo locally (model checkpoints will be fetched automatically upon startup)
pip install -r requirements_demo.txt
streamlit run app.py

Streamlit Demo

Implementation

Our code is written in JAX/ Flax and mainly based upon jaxnerf from Google Research. The base code is highly optimized in GPU & TPU. For semantic consistency loss, we utilize pretrained CLIP Vision Transformer from transformers library.

To learn more about DietNeRF, our experiments and implementation, you are highly recommended to check out our very detailed Notion write-up!

스크린샷 2021-07-04 오후 4 11 51

🤗 Hugging Face Model Hub Repo

You can also find our project and our model checkpoints on our Hugging Face Model Hub Repository. The models checkpoints are located in models folder.

Our JAX/Flax implementation currently supports:

Platform Single-Host GPU Multi-Device TPU
Type Single-Device Multi-Device Single-Host Multi-Host
Training Supported Supported Supported Supported
Evaluation Supported Supported Supported Supported

💻 Installation

# Clone the repo
git clone https://github.com/codestella/putting-nerf-on-a-diet
# Create a conda environment, note you can use python 3.6-3.8 as
# one of the dependencies (TensorFlow) hasn't supported python 3.9 yet.
conda create --name jaxnerf python=3.6.12; conda activate jaxnerf
# Prepare pip
conda install pip; pip install --upgrade pip
# Install requirements
pip install -r requirements.txt
# [Optional] Install GPU and TPU support for Jax
# Remember to change cuda101 to your CUDA version, e.g. cuda110 for CUDA 11.0.
!pip install --upgrade jax "jax[cuda110]" -f https://storage.googleapis.com/jax-releases/jax_releases.html
# install flax and flax-transformer
pip install flax transformers[flax]

Dataset

Download the datasets from the NeRF official Google Drive. Please download the nerf_synthetic.zip and unzip them in the place you like. Let's assume they are placed under /tmp/jaxnerf/data/.

🤟 How to Train

  1. Train in our prepared Colab notebook: Colab Pro is recommended, otherwise you may encounter out-of-memory
  2. Train locally: set use_semantic_loss=true in your yaml configuration file to enable DietNeRF.
python -m train \
  --data_dir=/PATH/TO/YOUR/SCENE/DATA \ # (e.g. nerf_synthetic/lego)
  --train_dir=/PATH/TO/THE/PLACE/YOU/WANT/TO/SAVE/CHECKPOINTS \
  --config=configs/CONFIG_YOU_LIKE

💎 Experimental Results

Rendered Rendering images by 8-shot learned DietNeRF

DietNeRF has a strong capacity to generalise on novel and challenging views with EXTREMELY SMALL TRAINING SAMPLES!

HOTDOG / DRUM / SHIP / CHAIR / LEGO / MIC

Rendered GIF by occluded 14-shot learned NeRF and Diet-NeRF

We made artificial occlusion on the right side of image (Only picked left side training poses). The reconstruction quality can be compared with this experiment. DietNeRF shows better quality than Original NeRF when It is occluded.

Training poses

LEGO

Diet NeRF NeRF

SHIP

Diet NeRF NeRF

👨‍👧‍👦 Our Team

Teams Members
Project Managing Stella Yang To Watch Our Project Progress, Please Check Our Project Notion
NeRF Team Stella Yang, Alex Lau, Seunghyun Lee, Hyunkyu Kim, Haswanth Aekula, JaeYoung Chung
CLIP Team Seunghyun Lee, Sasikanth Kotti, Khalid Sifullah , Sunghyun Kim
Cloud TPU Team Alex Lau, Aswin Pyakurel, JaeYoung Chung, Sunghyun Kim

*Special mention to our "night owl" contributors 🦉 : Seunghyun Lee, Alex Lau, Stella Yang, Haswanth Aekula

💞 Social Impact

  • Game Industry
  • Augmented Reality Industry
  • Virtual Reality Industry
  • Graphics Industry
  • Online shopping
  • Metaverse
  • Digital Twin
  • Mapping / SLAM

🌱 References

This project is based on “JAX-NeRF”.

@software{jaxnerf2020github,
  author = {Boyang Deng and Jonathan T. Barron and Pratul P. Srinivasan},
  title = {{JaxNeRF}: an efficient {JAX} implementation of {NeRF}},
  url = {https://github.com/google-research/google-research/tree/master/jaxnerf},
  version = {0.0},
  year = {2020},
}

This project is based on “Putting NeRF on a Diet”.

@misc{jain2021putting,
      title={Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis}, 
      author={Ajay Jain and Matthew Tancik and Pieter Abbeel},
      year={2021},
      eprint={2104.00677},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

🔑 License

Apache License 2.0

❤️ Special Thanks

Our Project is motivated by HuggingFace X GoogleAI (JAX) Community Week Event 2021.

We would like to take this chance to thank Hugging Face for organizing such an amazing open-source initiative, Suraj and Patrick for all the technical help. We learn a lot throughout this wonderful experience!

스크린샷 2021-07-04 오후 4 11 51

Finally, we would like to thank Common Computer AI for sponsoring our team access to V100 multi-GPUs server. Thank you so much for your support!

스크린샷

Owner
Stella Seoyeon Yang's New Github Account for Research. Ph.D. Candidate Student in SNU, CV lab.
Tilted Empirical Risk Minimization (ICLR '21)

Tilted Empirical Risk Minimization This repository contains the implementation for the paper Tilted Empirical Risk Minimization ICLR 2021 Empirical ri

Tian Li 40 Nov 28, 2022
Inteligência artificial criada para realizar interação social com idosos.

IA SONIA 4.0 A SONIA foi inspirada no assistente mais famoso do mundo e muito bem conhecido JARVIS. Todo mundo algum dia ja sonhou em ter o seu própri

Vinícius Azevedo 2 Oct 21, 2021
CS583: Deep Learning

CS583: Deep Learning

Shusen Wang 2.6k Dec 30, 2022
MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving.

MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving. It is a comprehensive framework for research purpose that integrates popular MWP benchmark datasets and typical deep learnin

119 Jan 04, 2023
Hand Gesture Volume Control | Open CV | Computer Vision

Gesture Volume Control Hand Gesture Volume Control | Open CV | Computer Vision Use gesture control to change the volume of a computer. First we look i

Jhenil Parihar 3 Jun 15, 2022
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8.1k Jan 02, 2023
Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification This repository is the official implementation of [Dealing With Misspeci

0 Oct 25, 2021
Implementation of the bachelor's thesis "Real-time stock predictions with deep learning and news scraping".

Real-time stock predictions with deep learning and news scraping This repository contains a partial implementation of my bachelor's thesis "Real-time

David Álvarez de la Torre 0 Feb 09, 2022
Acute ischemic stroke dataset

AISD Acute ischemic stroke dataset contains 397 Non-Contrast-enhanced CT (NCCT) scans of acute ischemic stroke with the interval from symptom onset to

Kongming Liang 21 Sep 06, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022
OMAMO: orthology-based model organism selection

OMAMO: orthology-based model organism selection OMAMO is a tool that suggests the best model organism to study a biological process based on orthologo

Dessimoz Lab 5 Apr 22, 2022
Reimplementation of the paper "Attention, Learn to Solve Routing Problems!" in jax/flax.

JAX + Attention Learn To Solve Routing Problems Reinplementation of the paper Attention, Learn to Solve Routing Problems! using Jax and Flax. Fully su

Gabriela Surita 7 Dec 01, 2022
Phylogeny Partners

Phylogeny-Partners Two states models Instalation You may need to install the cython, networkx, numpy, scipy package: pip install cython, networkx, num

1 Sep 19, 2022
An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astronomy data.

EquivariantSelfAttention An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astro

2 Nov 09, 2021
Conditional Generative Adversarial Networks (CGAN) for Mobility Data Fusion

This code implements the paper, Kim et al. (2021). Imputing Qualitative Attributes for Trip Chains Extracted from Smart Card Data Using a Conditional Generative Adversarial Network. Transportation Re

Eui-Jin Kim 2 Feb 03, 2022
An Intelligent Self-driving Truck System For Highway Transportation

Inceptio Intelligent Truck System An Intelligent Self-driving Truck System For Highway Transportation Note The code is still in development. OS requir

InceptioResearch 11 Jul 13, 2022
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
[CVPR 2020] Local Class-Specific and Global Image-Level Generative Adversarial Networks for Semantic-Guided Scene Generation

Contents Local and Global GAN Cross-View Image Translation Semantic Image Synthesis Acknowledgments Related Projects Citation Contributions Collaborat

Hao Tang 131 Dec 07, 2022
This repository contains all the code and materials distributed in the 2021 Q-Programming Summer of Qode.

Q-Programming Summer of Qode This repository contains all the code and materials distributed in the Q-Programming Summer of Qode. If you want to creat

Sammarth Kumar 11 Jun 11, 2021