TANL: Structured Prediction as Translation between Augmented Natural Languages

Related tags

Deep Learningtanl
Overview

TANL: Structured Prediction as Translation between Augmented Natural Languages

Code for the paper "Structured Prediction as Translation between Augmented Natural Languages" (ICLR 2021).

If you use this code, please cite the paper using the bibtex reference below.

@inproceedings{tanl,
    title={Structured Prediction as Translation between Augmented Natural Languages},
    author={Giovanni Paolini and Ben Athiwaratkun and Jason Krone and Jie Ma and Alessandro Achille and Rishita Anubhai and Cicero Nogueira dos Santos and Bing Xiang and Stefano Soatto},
    booktitle={9th International Conference on Learning Representations, {ICLR} 2021},
    year={2021},
}

Requirements

  • Python 3.6+
  • PyTorch (tested with version 1.7.1)
  • Transformers (tested with version 4.0.0)
  • NetworkX (tested with version 2.5, only used in coreference resolution)

You can install all required Python packages with pip install -r requirements.txt

Datasets

By default, datasets are expected to be in data/DATASET_NAME. Dataset-specific code is in datasets.py.

For example, the CoNLL04 and ADE datasets (joint entity and relation extraction) in the correct format can be downloaded using https://github.com/markus-eberts/spert/blob/master/scripts/fetch_datasets.sh. For other datasets, pre-processing and links are documented in the code.

Running the code

Use the following command: python run.py JOB

The JOB argument refers to a section of the config file, which by default is config.ini. A sample config file is provided, with settings that allow for a faster training and less memory usage than the settings used to obtain the final results in the paper.

For example, to replicate the paper's results on CoNLL04, have the following section in the config file:

[conll04_final]
datasets = conll04
model_name_or_path = t5-base
num_train_epochs = 200
max_seq_length = 256
max_seq_length_eval = 512
train_split = train,dev
per_device_train_batch_size = 8
per_device_eval_batch_size = 16
do_train = True
do_eval = False
do_predict = True
episodes = 1-10
num_beams = 8

Then run python run.py conll04_final. Note that the final results will differ slightly from the ones reported in the paper, due to small code changes and randomness.

Config arguments can be overwritten by command line arguments. For example: python run.py conll04_final --num_train_epochs 50.

Additional details

If do_train = True, the model is trained on the given train split (e.g., 'train') of the given datasets. The final weights and intermediate checkpoints are written in a directory such as experiments/conll04_final-t5-base-ep200-len256-b8-train, with one subdirectory per episode. Results in JSON format are also going to be saved there.

In every episode, the model is trained on a different (random) permutation of the training set. The random seed is given by the episode number, so that every episode always produces the same exact model.

Once a model is trained, it is possible to evaluate it without training again. For this, set do_train = False or (more easily) provide the -e command-line argument: python run.py conll04_final -e.

If do_eval = True, the model is evaluated on the 'dev' split. If do_predict = True, the model is evaluated on the 'test' split.

Arguments

The following are the most important command-line arguments for the run.py script. Run python run.py -h for the full list.

  • -c CONFIG_FILE: specify config file to use (default is config.ini)
  • -e: only run evaluation (overwrites the setting do_train in the config file)
  • -a: evaluate also intermediate checkpoints, in addition to the final model
  • -v : print results for each evaluation run
  • -g GPU: specify which GPU to use for evaluation

The following are the most important arguments for the config file. See the sample config file to understand the format.

  • datasets (str): comma-separated list of datasets for training
  • eval_datasets (str): comma-separated list of datasets for evaluation (default is the same as for training)
  • model_name_or_path (str): path to pretrained model or model identifier from huggingface.co/models (e.g. t5-base)
  • do_train (bool): whether to run training (default is False)
  • do_eval (bool): whether to run evaluation on the dev set (default is False)
  • do_predict (bool): whether to run evaluation on the test set (default is False)
  • train_split (str): comma-separated list of data splits for training (default is train)
  • num_train_epochs (int): number of train epochs
  • learning_rate (float): initial learning rate (default is 5e-4)
  • train_subset (float > 0 and <=1): portion of training data to effectively use during training (default is 1, i.e., use all training data)
  • per_device_train_batch_size (int): batch size per GPU during training (default is 8)
  • per_device_eval_batch_size (int): batch size during evaluation (default is 8; only one GPU is used for evaluation)
  • max_seq_length (int): maximum input sequence length after tokenization; longer sequences are truncated
  • max_output_seq_length (int): maximum output sequence length (default is max_seq_length)
  • max_seq_length_eval (int): maximum input sequence length for evaluation (default is max_seq_length)
  • max_output_seq_length_eval (int): maximum output sequence length for evaluation (default is max_output_seq_length or max_seq_length_eval or max_seq_length)
  • episodes (str): episodes to run (default is 0; an interval can be specified, such as 1-4; the episode number is used as the random seed)
  • num_beams (int): number of beams for beam search during generation (default is 1)
  • multitask (bool): if True, the name of the dataset is prepended to each input sentence (default is False)

See arguments.py and transformers.TrainingArguments for additional config arguments.

League of Legends Reinforcement Learning Environment (LoLRLE) multiple training scenarios using PPO.

League of Legends Reinforcement Learning Environment (LoLRLE) About This repo contains code to train an agent to play league of legends in a distribut

2 Aug 19, 2022
Matthew Colbrook 1 Apr 08, 2022
Pywonderland - A tour in the wonderland of math with python.

A Tour in the Wonderland of Math with Python A collection of python scripts for drawing beautiful figures and animating interesting algorithms in math

Zhao Liang 4.1k Jan 03, 2023
A basic implementation of Layer-wise Relevance Propagation (LRP) in PyTorch.

Layer-wise Relevance Propagation (LRP) in PyTorch Basic unsupervised implementation of Layer-wise Relevance Propagation (Bach et al., Montavon et al.)

Kai Fabi 28 Dec 26, 2022
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 08, 2022
๐Ÿฅ‡ LG-AI-Challenge 2022 1์œ„ ์†”๋ฃจ์…˜ ์ž…๋‹ˆ๋‹ค.

LG-AI-Challenge-for-Plant-Classification Dacon์—์„œ ์ง„ํ–‰๋œ ๋†์—… ํ™˜๊ฒฝ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์ž‘๋ฌผ ๋ณ‘ํ•ด ์ง„๋‹จ AI ๊ฒฝ์ง„๋Œ€ํšŒ ์— ๋Œ€ํ•œ ์ฝ”๋“œ์ž…๋‹ˆ๋‹ค. (colab directory์— ์ฝ”๋“œ๊ฐ€ ์ž˜ ์ •๋ฆฌ ๋˜์–ด์žˆ์Šต๋‹ˆ๋‹ค.) Requirements python

siwooyong 10 Jun 30, 2022
Half Instance Normalization Network for Image Restoration

HINet Half Instance Normalization Network for Image Restoration, based on https://github.com/megvii-model/HINet. Dependencies NumPy PyTorch, preferabl

Holy Wu 4 Jun 06, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

538 Jan 09, 2023
Open source implementation of "A Self-Supervised Descriptor for Image Copy Detection" (SSCD).

A Self-Supervised Descriptor for Image Copy Detection (SSCD) This is the open-source codebase for "A Self-Supervised Descriptor for Image Copy Detecti

Meta Research 68 Jan 04, 2023
This code is an unofficial implementation of HiFiSinger.

HiFiSinger This code is an unofficial implementation of HiFiSinger. The algorithm is based on the following papers: Chen, J., Tan, X., Luan, J., Qin,

Heejo You 87 Dec 23, 2022
A GUI for Face Recognition, based upon Docker, Tkinter, GPU and a camera device.

Face Recognition GUI This repository is a GUI version of Face Recognition by Adam Geitgey, where e.g. Docker and Tkinter are utilized. All the materia

Kasper Henriksen 6 Dec 05, 2022
Code for `BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery`, Neurips 2021

This folder contains the code for 'Scalable Variational Approaches for Bayesian Causal Discovery'. Installation To install, use conda with conda env c

14 Sep 21, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
Split Variational AutoEncoder

Split-VAE Split Variational AutoEncoder Introduction This repository contains and implemementation of a Split Variational AutoEncoder (SVAE). In a SVA

Andrea Asperti 2 Sep 02, 2022
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Xuan Hieu Duong 7 Jan 12, 2022
High accurate tool for automatic faces detection with landmarks

faces_detanator High accurate tool for automatic faces detection with landmarks. The library is based on public detectors with high accuracy (TinaFace

Ihar 7 May 10, 2022
MMFlow is an open source optical flow toolbox based on PyTorch

Documentation: https://mmflow.readthedocs.io/ Introduction English | ็ฎ€ไฝ“ไธญๆ–‡ MMFlow is an open source optical flow toolbox based on PyTorch. It is a part

OpenMMLab 688 Jan 06, 2023
CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation

CoTr: Efficient 3D Medical Image Segmentation by bridging CNN and Transformer This is the official pytorch implementation of the CoTr: Paper: CoTr: Ef

218 Dec 25, 2022
Blind visual quality assessment on 360ยฐ Video based on progressive learning

Blind visual quality assessment on omnidirectional or 360 video (ProVQA) Blind VQA for 360ยฐ Video via Progressively Learning from Pixels, Frames and V

5 Jan 06, 2023
Keras implementation of Deeplab v3+ with pretrained weights

Keras implementation of Deeplabv3+ This repo is not longer maintained. I won't respond to issues but will merge PR DeepLab is a state-of-art deep lear

1.3k Dec 07, 2022