LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

Overview

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrieval text relevant base on result of elasticsearch

  • Model achieved 0.747 F2 score in public test (Legal Text Retrieval Zalo AI Challenge 2021)
  • If using elasticsearch only, our F2 score is 0.54

Algorithm design

Our algorithm includes two key components:

  • Elasticsearch
  • Cross Encoder Model

Elasticsearch

Elasticsearch is used for filtering top-k most relevant articles based on BM25 score.

Cross Encoder Model

model

Our model accepts query, article text (passage) and article title as inputs and outputs a relevant score of that query and that article. Higher score, more relavant. We use pretrained vinai/phobert-base and CrossEntropyLoss or BCELoss as loss function

Train dataset

Non-relevant samples in dataset are obtained by top-10 result of elasticsearch, the training data (train_data_model.json) has format as follow:

[
    {
        "question_id": "..."
        "question": "..."
        "relevant_articles":[
            {
                "law_id": "..."
                "article_id": "..."
                "title": "..."
                "text": "..."
            },
            ...
        ]
        "non_relevant_articles":[
            {
                "law_id": "..."
                "article_id": "..."
                "title": "..."
                "text": "..."
            },
            ...
        ]
    },
    ...
]

Test dataset

First we use elasticsearch to obtain k relevant candidates (k=top-50 result of elasticsearch), then LTR_CrossEncoder classify which actual relevant article. The test data (test_data_model.json) has format as follow:

[
    {
        "question_id": "..."
        "question": "..."
        "articles":[
            {
                "law_id": "..."
                "article_id": "..."
                "title": "..."
                "text": "..."
            },
            ...
        ]
    },
    ...
]

Training

Run the following bash file to train model:

bash run_phobert.sh

Inference

We also provide model checkpoints. Please download these checkpoints if you want to make inference on a new text file without training the models from scratch. Create new checkpoint folder, unzip model file and push it in checkpoint folder. https://drive.google.com/file/d/1oT8nlDIAatx3XONN1n5eOgYTT6Lx_h_C/view?usp=sharing

Run the following bash file to infer test dataset:

bash run_predict.sh
Owner
Xuan Hieu Duong
Xuan Hieu Duong
A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

33 Dec 18, 2022
MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios This is the official TensorFlow implementation of MetaTTE in the

morningstarwang 4 Dec 14, 2022
This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA)

Description This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA), described in the publication [1]. Directory

MAMMASMIAS Consortium 6 Nov 14, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion" Coming soon, as soon as I finish a

Ziyao Zeng 14 Feb 26, 2022
Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21).

ACTION-Net Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21). Getting Started EgoGesture data folder struct

V-Sense 171 Dec 26, 2022
Code for paper [ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot] (ICCV 2021, oral))

ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot This repository is the official PyTorch implementation of ICCV-21 pape

Jiarui 21 May 09, 2022
Auxiliary data to the CHIIR paper Searching to Learn with Instructional Scaffolding

Searching to Learn with Instructional Scaffolding This is the data and analysis code for the paper "Searching to Learn with Instructional Scaffolding"

Arthur Câmara 2 Mar 02, 2022
A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch The official pytorch implementation of the paper "Towards Faster and Stabilize

Bingchen Liu 455 Jan 08, 2023
A simple editor for captions in .SRT file extension

WaySRT A simple editor for captions in .SRT file extension The program doesn't use any external dependecies, just run: python way_srt.py {file_name.sr

Gustavo Lopes 3 Nov 16, 2022
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021

PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou

Yi Wei 43 Dec 05, 2022
Causal Influence Detection for Improving Efficiency in Reinforcement Learning

Causal Influence Detection for Improving Efficiency in Reinforcement Learning This repository contains the code release for the paper "Causal Influenc

Autonomous Learning Group 21 Nov 29, 2022
Main Results on ImageNet with Pretrained Models

This repository contains Pytorch evaluation code, training code and pretrained models for the following projects: SPACH (A Battle of Network Structure

Microsoft 151 Dec 14, 2022
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
The full training script for Enformer (Tensorflow Sonnet) on TPU clusters

Enformer TPU training script (wip) The full training script for Enformer (Tensorflow Sonnet) on TPU clusters, in an effort to migrate the model to pyt

Phil Wang 10 Oct 19, 2022
The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation

Maxim Zaika 1 Nov 17, 2021
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks This is the official repository for our paper: Sharpness-aware Quantization for Deep Neural Netw

Zhuang AI Group 30 Dec 19, 2022
[peer review] An Arbitrary Scale Super-Resolution Approach for 3D MR Images using Implicit Neural Representation

ArSSR This repository is the pytorch implementation of our manuscript "An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonan

Qing Wu 19 Dec 12, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
Collection of machine learning related notebooks to share.

ML_Notebooks Collection of machine learning related notebooks to share. Notebooks GAN_distributed_training.ipynb In this Notebook, TensorFlow's tutori

Sascha Kirch 14 Dec 22, 2022