Official code for "Distributed Deep Learning in Open Collaborations" (NeurIPS 2021)

Related tags

Deep LearningDeDLOC
Overview

Distributed Deep Learning in Open Collaborations

This repository contains the code for the NeurIPS 2021 paper

"Distributed Deep Learning in Open Collaborations"

Michael Diskin*, Alexey Bukhtiyarov*, Max Ryabinin*, Lucile Saulnier, Quentin Lhoest, Anton Sinitsin, Dmitry Popov, Dmitry Pyrkin, Maxim Kashirin, Alexander Borzunov, Albert Villanova del Moral, Denis Mazur, Ilia Kobelev, Yacine Jernite, Thomas Wolf, Gennady Pekhimenko

Link: ArXiv

Note

This repository contains a snapshot of the code used to conduct experiments in the paper.

Please use the up-to-date version of our library if you want to try out collaborative training and/or set up your own experiment. It contains many substantial improvements, including better documentation and fixed bugs.

Installation

Before running the experiments, please set up the environment by following the steps below:

  • Prepare an environment with python 3.7-3.9. Anaconda is recommended, but not required
  • Install the hivemind library from the master branch or by running pip install hivemind==0.9.9.post1

For all distributed experiments, the installation procedure must be repeated on every machine that participates in the experiment. We recommend using machines with at least 2 CPU cores, 16 GB RAM and, when applicable, a low/mid-tier NVIDIA GPU.

Experiments

The code is divided into several sections matching the corresponding experiments:

  • albert contains the code for controlled experiments with ALBERT-large on WikiText-103;
  • swav is for training SwAV on ImageNet data;
  • sahajbert contains the code used to conduct a public collaborative experiment for the Bengali language ALBERT;
  • p2p is a step-by-step tutorial that explains decentralized NAT traversal and circuit relays.

We recommend running albert experiments first: other experiments build on top of its code and may reqire more careful setup (e.g. for public participation). Furthermore, for this experiment, we provide a script for launching experiments using preemptible GPUs in the cloud.

Acknowledgements

This project is the result of a collaboration between Yandex, Hugging Face, MIPT, HSE University, University of Toronto, Vector Institute, and Neuropark.

We also thank Stas Bekman, Dmitry Abulkhanov, Roman Zhytar, Alexander Ploshkin, Vsevolod Plokhotnyuk and Roman Kail for their invaluable help with building the training infrastructure. Also, we thank Abhishek Thakur for helping with downstream evaluation and Tanmoy Sarkar with Omar Sanseviero, who helped us organize the collaborative experiment and gave regular status updates to the participants over the course of the training run.

Contacts

Feel free to ask any questions in our Discord chat or by email.

Citation

@inproceedings{diskin2021distributed,
    title = {Distributed Deep Learning In Open Collaborations},
    author = {Michael Diskin and Alexey Bukhtiyarov and Max Ryabinin and Lucile Saulnier and Quentin Lhoest and Anton Sinitsin and Dmitry Popov and Dmitriy Pyrkin and Maxim Kashirin and Alexander Borzunov and Albert Villanova del Moral and Denis Mazur and Ilia Kobelev and Yacine Jernite and Thomas Wolf and Gennady Pekhimenko},
    booktitle = {Advances in Neural Information Processing Systems},
    editor = {A. Beygelzimer and Y. Dauphin and P. Liang and J. Wortman Vaughan},
    year = {2021},
    url = {https://openreview.net/forum?id=FYHktcK-7v}
}
Feup-csr - Repository holding my group's submission to the CSR project competition

CSR Competições de Swarm Robotics Swarm Robotics Competitions This repository holds the files submitted for the CSR project competition. Project group

Nuno Pereira 1 Jan 04, 2022
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
A Python 3 package for state-of-the-art statistical dimension reduction methods

direpack: a Python 3 library for state-of-the-art statistical dimension reduction techniques This package delivers a scikit-learn compatible Python 3

Sven Serneels 32 Dec 14, 2022
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

AtlasNet [Project Page] [Paper] [Talk] AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix, Matthew Fisher, Vladimir

577 Dec 17, 2022
A Python library for Deep Probabilistic Modeling

Abstract DeeProb-kit is a Python library that implements deep probabilistic models such as various kinds of Sum-Product Networks, Normalizing Flows an

DeeProb-org 46 Dec 26, 2022
Corgis are the cutest creatures; have 30K of them!

corgi-net This is a dataset of corgi images scraped from the corgi subreddit. After filtering using an ImageNet classifier, the training set consists

Alex Nichol 6 Dec 24, 2022
An example showing how to use jax to train resnet50 on multi-node multi-GPU

jax-multi-gpu-resnet50-example This repo shows how to use jax for multi-node multi-GPU training. The example is adapted from the resnet50 example in d

Yangzihao Wang 20 Jul 04, 2022
disentanglement_lib is an open-source library for research on learning disentangled representations.

disentanglement_lib disentanglement_lib is an open-source library for research on learning disentangled representation. It supports a variety of diffe

Google Research 1.3k Dec 28, 2022
DAT4 - General Assembly's Data Science course in Washington, DC

DAT4 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (12/15/14 - 3/16/15). Instructors: Sinan Ozdemir

Kevin Markham 779 Dec 25, 2022
CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021

CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021 How to cite If you use these data please cite the o

Digital Linguistics 2 Dec 20, 2021
LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation

LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation Table of Contents: Introduction Project Structure Installation Datas

Yu Wang 492 Dec 02, 2022
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8

Yunfan Li 210 Dec 30, 2022
Knowledge Management for Humans using Machine Learning & Tags

HyperTag HyperTag helps humans intuitively express how they think about their files using tags and machine learning.

Ravn Tech, Inc. 165 Nov 04, 2022
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 463 Dec 09, 2022
Multi-scale discriminator feature-wise loss function

Multi-Scale Discriminative Feature Loss This repository provides code for Multi-Scale Discriminative Feature (MDF) loss for image reconstruction algor

Graphics and Displays group - University of Cambridge 76 Dec 12, 2022
A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Semantic Meshes A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model. Paper If you find this framework usefu

Florian 40 Dec 09, 2022
A small library for doing fluid simulation with neural networks.

Neural Fluid Fields This is a small library for doing fluid simulation with neural fields. Check out our review paper, Neural Fields in Visual Computi

Towaki 23 Jun 23, 2022
A lossless neural compression framework built on top of JAX.

Kompressor Branch CI Coverage main (active) main development A neural compression framework built on top of JAX. Install setup.py assumes a compatible

Rosalind Franklin Institute 2 Mar 14, 2022
🇰🇷 Text to Image in Korean

KoDALLE Utilizing pretrained language model’s token embedding layer and position embedding layer as DALLE’s text encoder. Background Training DALLE mo

HappyFace 74 Sep 22, 2022
ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts

ANEA The goal of Automatic (Named) Entity Annotation is to create a small annotated dataset for NER extracted from German domain-specific texts. Insta

Anastasia Zhukova 2 Oct 07, 2022