LieTransformer: Equivariant Self-Attention for Lie Groups

Overview

LieTransformer

This repository contains the implementation of the LieTransformer used for experiments in the paper

LieTransformer: Equivariant Self-Attention for Lie Groups

by Michael Hutchinson*, Charline Le Lan*, Sheheryar Zaidi*, Emilien Dupont, Yee Whye Teh and Hyunjik Kim

* Equal contribution.

Pattern recognition Molecular property prediction Particle Dynamics
Constellations Rotating molecule Particle trajectories

Introduction

LieTransformer is a equivariant Transformer-like model, built out of equivariant self attention layers (LieSelfAttention). The model can be made equivariant to any Lie group, simply by providing and implementation of the group of interest. A number of commonly used groups are already implemented, building off the work of LieConv. Switching group equivariance requires no change to model architecture, only passsing a different group to the model.

Architecture

The overall architecture of the LieTransformer is similar to the architecture of the original Transformer, interleaving series of attention layers and pointwise MLPs in residual blocks. The architecture of the LieSelfAttention blocks differs however, and can be seen below. For more details, please see the paper.

model diagram

Installation

To repoduce the experiments in this library, first clone the repo via git clone [email protected]:oxcsml/eqv_transformer.git. To install the dependencies and create a virtual environment, execute setup_virtualenv.sh. Alternatively you can install the library and its dependencies without creating a virtual environment via pip install -e ..

To install the library as a dependency for another project use pip install git+https://github.com/oxcsml/eqv_transformer.

Training a model

Example command to train a model (in this case the Set Transformer on the constellation dataset):

python3 scripts/train.py --data_config configs/constellation.py --model_config configs/set_transformer.py --run_name my_experiment --learning_rate=1e-4 --batch_size 128

The model and the dataset can be chosen by specifying different config files. Flags for configuring the model and the dataset are available in the respective config files. The project is using forge for configs and experiment management. Please refer to this forge description and examples for details.

Counting patterns in the constellation dataset

The first task implemented is counting patterns in the constellation dataset. We generate a fixed dataset of constellations, where each constellation consists of 0-8 patterns; each pattern consists of corners of a shape. Currently available shapes are triangle, square, pentagon and an L. The task is to count the number of occurences of each pattern. To save to file the constellation datasets, run before training:

python3 scripts/data_to_file.py

Else, the constellation datasets are regenerated at the beginning of the training.

Dataset and model consistency

When changing the dataset parameters (e.g. number of patterns, types of patterns etc) make sure that the model parameters are adjusted accordingly. For example patterns=square,square,triangle,triangle,pentagon,pentagon,L,L means that there can be four different patterns, each repeated two times. That means that counting will involve four three-way classification tasks, and so that n_outputs and output_dim in classifier.py needs to be set to 4 and 3, respectively. All this can be set through command-line arguments.

Results

Constellations results

QM9

This dataset consists of 133,885 small inorganic molecules described by the location and charge of each atom in the molecule, along with the bonding structure of the molecule. The dataset includes 19 properties of each molecule, such as various rotational constants, energies and enthalpies. We aim to predict 12 of these properties.

python scripts/train_molecule.py \
    --run_name "molecule_homo" \
    --model_config "configs/molecule/eqv_transformer_model.py" \
    --model_seed 0
    --data_seed 0 \
    --task homo

Results

QM9 results

Hamiltonian dynamics

In this experiment, we aim to predict the trajectory of a number of particles connected together by a series of springs. This is done by learning the Hamiltonian of the system from observed trajectories.

The following command generates a dataset of trajectories and trains LieTransformer on it. Data generation occurs in the first run and can take some time.

T(2) default: python scripts/train_dynamics.py
SE(2) default: python scripts/train_dynamics.py --group 'SE(2)_canonical' --lift_samples 2 --num_layers 3 --dim_hidden 80

Results

Rollout MSE Example Trajectories
dynamics data efficiency trajectories

Contributing

Contributions are best developed in separate branches. Once a change is ready, please submit a pull request with a description of the change. New model and data configs should go into the config folder, and the rest of the code should go into the eqv_transformer folder.

Owner
OxCSML (Oxford Computational Statistics and Machine Learning)
OxCSML (Oxford Computational Statistics and Machine Learning)
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News 💪 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Hongsuk Choi 113 Dec 21, 2022
Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Det

123 Jan 04, 2023
USAD - UnSupervised Anomaly Detection on multivariate time series

USAD - UnSupervised Anomaly Detection on multivariate time series Scripts and utility programs for implementing the USAD architecture. Implementation

116 Jan 04, 2023
Demo project for real time anomaly detection using kafka and python

kafkaml-anomaly-detection Project for real time anomaly detection using kafka and python It's assumed that zookeeper and kafka are running in the loca

Rodrigo Arenas 36 Dec 12, 2022
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 04, 2023
An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results

EasyDatas An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results Installation pip install git+https

Ximing Yang 4 Dec 14, 2021
A Benchmark For Measuring Systematic Generalization of Multi-Hierarchical Reasoning

Orchard Dataset This repository contains the code used for generating the Orchard Dataset, as seen in the Multi-Hierarchical Reasoning in Sequences: S

Bill Pung 1 Jun 05, 2022
Code for "Offline Meta-Reinforcement Learning with Advantage Weighting" [ICML 2021]

Offline Meta-Reinforcement Learning with Advantage Weighting (MACAW) MACAW code used for the experiments in the ICML 2021 paper. Installing the enviro

Eric Mitchell 28 Jan 01, 2023
Plato: A New Framework for Federated Learning Research

a new software framework to facilitate scalable federated learning research.

System <a href=[email protected] Lab"> 192 Jan 05, 2023
[ICCV21] Self-Calibrating Neural Radiance Fields

Self-Calibrating Neural Radiance Fields, ICCV, 2021 Project Page | Paper | Video Author Information Yoonwoo Jeong [Google Scholar] Seokjun Ahn [Google

381 Dec 30, 2022
A library for optimization on Riemannian manifolds

TensorFlow RiemOpt A library for manifold-constrained optimization in TensorFlow. Installation To install the latest development version from GitHub:

Oleg Smirnov 83 Dec 27, 2022
Agile SVG maker for python

Agile SVG Maker Need to draw hundreds of frames for a GIF? Need to change the style of all pictures in a PPT? Need to draw similar images with differe

SemiWaker 4 Sep 25, 2022
Multi-Objective Reinforced Active Learning

Multi-Objective Reinforced Active Learning Dependencies wandb tqdm pytorch = 1.7.0 numpy = 1.20.0 scipy = 1.1.0 pycolab == 1.2 Weights and Biases O

Markus Peschl 6 Nov 19, 2022
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Meta Archive 873 Dec 15, 2022
UniLM AI - Large-scale Self-supervised Pre-training across Tasks, Languages, and Modalities

Pre-trained (foundation) models across tasks (understanding, generation and translation), languages (100+ languages), and modalities (language, image, audio, vision + language, audio + language, etc.

Microsoft 7.6k Jan 01, 2023
Py-FEAT: Python Facial Expression Analysis Toolbox

Py-FEAT is a suite for facial expressions (FEX) research written in Python. This package includes tools to detect faces, extract emotional facial expressions (e.g., happiness, sadness, anger), facial

Computational Social Affective Neuroscience Laboratory 147 Jan 06, 2023
AFLNet: A Greybox Fuzzer for Network Protocols

AFLNet: A Greybox Fuzzer for Network Protocols AFLNet is a greybox fuzzer for protocol implementations. Unlike existing protocol fuzzers, it takes a m

626 Jan 06, 2023
Weakly supervised medical named entity classification

Trove Trove is a research framework for building weakly supervised (bio)medical named entity recognition (NER) and other entity attribute classifiers

60 Nov 18, 2022
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.

What's New Below we share, in reverse chronological order, the updates and new releases in VISSL. All VISSL releases are available here. [Oct 2021]: V

Meta Research 2.9k Jan 07, 2023