[ACMMM 2021 Oral] Enhanced Invertible Encoding for Learned Image Compression

Related tags

Deep Learningpytorch
Overview

InvCompress

Official Pytorch Implementation for "Enhanced Invertible Encoding for Learned Image Compression", ACMMM 2021 (Oral)

Figure: Our framework

Acknowledgement

The framework is based on CompressAI, we add our model in compressai.models.ours, compressai.models.our_utils. We modify compressai.utils, compressai.zoo, compressai.layers and examples/train.py for usage. Part of the codes benefit from Invertible-Image-Rescaling.

Introduction

In this paper, we target at structuring a better transformation between the image space and the latent feature space. Instead of employing previous autoencoder style networks to build this transformation, we propose an enhanced Invertible Encoding Network with invertible neural networks (INNs) to largely mitigate the information loss problem for better compression. To solve the challenge of unstable training with INN, we propose an attentive channel squeeze layer to flexibly adjust the feature dimension for a lower bit rate. We also present a feature enhancement module with same-resolution transforms and residual connections to improve the network nonlinear representation capacity.

[Paper]

Figure: Our results

Installation

As mentioned in CompressAI, "A C++17 compiler, a recent version of pip (19.0+), and common python packages are also required (see setup.py for the full list)."

git clone https://github.com/xyq7/InvCompress.git
cd InvCompress/codes/
conda create -n invcomp python=3.7 
conda activate invcomp
pip install -U pip && pip install -e .
conda install -c conda-forge tensorboard

Usage

Evaluation

If you want evaluate with pretrained model, please download from Google drive or Baidu cloud (code: a7jd) and put in ./experiments/

Some evaluation dataset can be downloaded from kodak dataset, CLIC

Note that as mentioned in original CompressAI, "Inference on GPU is not recommended for the autoregressive models (the entropy coder is run sequentially on CPU)." So for inference of our model, please run on CPU.

python -m compressai.utils.eval_model checkpoint $eval_data_dir -a invcompress -exp $exp_name -s $save_dir

An example: to evaluate model of quality 1 optimized with mse on kodak dataset.

python -m compressai.utils.eval_model checkpoint ../data/kodak -a invcompress -exp exp_01_mse_q1 -s ../results/exp_01

If you want to evaluate your trained model on own data, please run update before evaluation. An example:

python -m compressai.utils.update_model -exp $exp_name -a invcompress
python -m compressai.utils.eval_model checkpoint $eval_data_dir -a invcompress -exp $exp_name -s $save_dir

Train

We use the training dataset processed in the repo. We further preprocess with /codes/scripts/flicker_process.py Training setting is detailed in the paper. You can also use your own data for training.

python examples/train.py -exp $exp_name -m invcompress -d $train_data_dir --epochs $epoch_num -lr $lr --batch-size $batch_size --cuda --gpu_id $gpu_id --lambda $lamvda --metrics $metric --save 

An example: to train model of quality 1 optimized with mse metric.

python examples/train.py -exp exp_01_mse_q1 -m invcompress -d ../data/flicker --epochs 600 -lr 1e-4 --batch-size 8 --cuda --gpu_id 0 --lambda 0.0016 --metrics mse --save 

Other usage please refer to the original library CompressAI

Citation

If you find this work useful for your research, please cite:

@inproceedings{xie2021enhanced,
    title = {Enhanced Invertible Encoding for Learned Image Compression}, 
    author = {Yueqi Xie and Ka Leong Cheng and Qifeng Chen},
    booktitle = {Proceedings of the ACM International Conference on Multimedia},
    year = {2021}
}

Contact

Feel free to contact us if there is any question. (YueqiXIE, [email protected]; Ka Leong Cheng, [email protected])

Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.

Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the

Ofir Press 138 Apr 15, 2022
UMich 500-Level Mobile Robotics Course

MOBILE ROBOTICS: METHODS & ALGORITHMS - WINTER 2022 University of Michigan - NA 568/EECS 568/ROB 530 For slides, lecture notes, and example codes, see

393 Dec 29, 2022
Optimizaciones incrementales al problema N-Body con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámbito de HPC.

Python HPC Optimizaciones incrementales de N-Body (all-pairs) con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámb

Andrés Milla 12 Aug 04, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
Meta Language-Specific Layers in Multilingual Language Models

Meta Language-Specific Layers in Multilingual Language Models This repo contains the source codes for our paper On Negative Interference in Multilingu

Zirui Wang 20 Feb 13, 2022
Realtime micro-expression recognition using OpenCV and PyTorch

Micro-expression Recognition Realtime micro-expression recognition from scratch using OpenCV and PyTorch Try it out with a webcam or video using the e

Irfan 35 Dec 05, 2022
Long Expressive Memory (LEM)

Long Expressive Memory for Sequence Modeling This repository contains the implementation to reproduce the numerical experiments of the paper Long Expr

Konstantin Rusch 47 Dec 17, 2022
Code release of paper Improving neural implicit surfaces geometry with patch warping

NeuralWarp: Improving neural implicit surfaces geometry with patch warping Project page | Paper Code release of paper Improving neural implicit surfac

François Darmon 167 Dec 30, 2022
Adversarial Graph Augmentation to Improve Graph Contrastive Learning

ADGCL : Adversarial Graph Augmentation to Improve Graph Contrastive Learning Introduction This repo contains the Pytorch [1] implementation of Adversa

susheel suresh 62 Nov 19, 2022
natural image generation using ConvNets

The Eyescream Project Generating Natural Images using Neural Networks. For our research summary on this work, please read the Arxiv paper: http://arxi

Meta Archive 601 Nov 23, 2022
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
The backbone CSPDarkNet of YOLOX.

YOLOX-Backbone The backbone CSPDarkNet of YOLOX. In this project, you can enjoy: CSPDarkNet-S CSPDarkNet-M CSPDarkNet-L CSPDarkNet-X CSPDarkNet-Tiny C

Jianhua Yang 9 Aug 22, 2022
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
Simulation of moving particles under microscopic imaging

Simulation of moving particles under microscopic imaging Install scipy numpy scikit-image tiffile Run python simulation.py Read result https://imagej

Zehao Wang 2 Dec 14, 2021
Code for visualizing the loss landscape of neural nets

Visualizing the Loss Landscape of Neural Nets This repository contains the PyTorch code for the paper Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer

Tom Goldstein 2.2k Jan 09, 2023
A PyTorch implementation of "DGC-Net: Dense Geometric Correspondence Network"

DGC-Net: Dense Geometric Correspondence Network This is a PyTorch implementation of our work "DGC-Net: Dense Geometric Correspondence Network" TL;DR A

191 Dec 16, 2022
Implementation of Axial attention - attending to multi-dimensional data efficiently

Axial Attention Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has

Phil Wang 250 Dec 25, 2022
基于Paddlepaddle复现yolov5,支持PaddleDetection接口

PaddleDetection yolov5 https://github.com/Sharpiless/PaddleDetection-Yolov5 简介 PaddleDetection飞桨目标检测开发套件,旨在帮助开发者更快更好地完成检测模型的组建、训练、优化及部署等全开发流程。 PaddleD

36 Jan 07, 2023
Source code for Acorn, the precision farming rover by Twisted Fields

Acorn precision farming rover This is the software repository for Acorn, the precision farming rover by Twisted Fields. For more information see twist

Twisted Fields 198 Jan 02, 2023
Gauge equivariant mesh cnn

Geometric Mesh CNN The code in this repository is an implementation of the Gauge Equivariant Mesh CNN introduced in the paper Gauge Equivariant Mesh C

50 Dec 18, 2022