[ACMMM 2021 Oral] Enhanced Invertible Encoding for Learned Image Compression

Related tags

Deep Learningpytorch
Overview

InvCompress

Official Pytorch Implementation for "Enhanced Invertible Encoding for Learned Image Compression", ACMMM 2021 (Oral)

Figure: Our framework

Acknowledgement

The framework is based on CompressAI, we add our model in compressai.models.ours, compressai.models.our_utils. We modify compressai.utils, compressai.zoo, compressai.layers and examples/train.py for usage. Part of the codes benefit from Invertible-Image-Rescaling.

Introduction

In this paper, we target at structuring a better transformation between the image space and the latent feature space. Instead of employing previous autoencoder style networks to build this transformation, we propose an enhanced Invertible Encoding Network with invertible neural networks (INNs) to largely mitigate the information loss problem for better compression. To solve the challenge of unstable training with INN, we propose an attentive channel squeeze layer to flexibly adjust the feature dimension for a lower bit rate. We also present a feature enhancement module with same-resolution transforms and residual connections to improve the network nonlinear representation capacity.

[Paper]

Figure: Our results

Installation

As mentioned in CompressAI, "A C++17 compiler, a recent version of pip (19.0+), and common python packages are also required (see setup.py for the full list)."

git clone https://github.com/xyq7/InvCompress.git
cd InvCompress/codes/
conda create -n invcomp python=3.7 
conda activate invcomp
pip install -U pip && pip install -e .
conda install -c conda-forge tensorboard

Usage

Evaluation

If you want evaluate with pretrained model, please download from Google drive or Baidu cloud (code: a7jd) and put in ./experiments/

Some evaluation dataset can be downloaded from kodak dataset, CLIC

Note that as mentioned in original CompressAI, "Inference on GPU is not recommended for the autoregressive models (the entropy coder is run sequentially on CPU)." So for inference of our model, please run on CPU.

python -m compressai.utils.eval_model checkpoint $eval_data_dir -a invcompress -exp $exp_name -s $save_dir

An example: to evaluate model of quality 1 optimized with mse on kodak dataset.

python -m compressai.utils.eval_model checkpoint ../data/kodak -a invcompress -exp exp_01_mse_q1 -s ../results/exp_01

If you want to evaluate your trained model on own data, please run update before evaluation. An example:

python -m compressai.utils.update_model -exp $exp_name -a invcompress
python -m compressai.utils.eval_model checkpoint $eval_data_dir -a invcompress -exp $exp_name -s $save_dir

Train

We use the training dataset processed in the repo. We further preprocess with /codes/scripts/flicker_process.py Training setting is detailed in the paper. You can also use your own data for training.

python examples/train.py -exp $exp_name -m invcompress -d $train_data_dir --epochs $epoch_num -lr $lr --batch-size $batch_size --cuda --gpu_id $gpu_id --lambda $lamvda --metrics $metric --save 

An example: to train model of quality 1 optimized with mse metric.

python examples/train.py -exp exp_01_mse_q1 -m invcompress -d ../data/flicker --epochs 600 -lr 1e-4 --batch-size 8 --cuda --gpu_id 0 --lambda 0.0016 --metrics mse --save 

Other usage please refer to the original library CompressAI

Citation

If you find this work useful for your research, please cite:

@inproceedings{xie2021enhanced,
    title = {Enhanced Invertible Encoding for Learned Image Compression}, 
    author = {Yueqi Xie and Ka Leong Cheng and Qifeng Chen},
    booktitle = {Proceedings of the ACM International Conference on Multimedia},
    year = {2021}
}

Contact

Feel free to contact us if there is any question. (YueqiXIE, [email protected]; Ka Leong Cheng, [email protected])

Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques

About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-

gts3.org (<a href=[email protected])"> 55 Oct 25, 2022
Unofficial PyTorch Implementation of AHDRNet (CVPR 2019)

AHDRNet-PyTorch This is the PyTorch implementation of Attention-guided Network for Ghost-free High Dynamic Range Imaging (CVPR 2019). The official cod

Yutong Zhang 4 Sep 08, 2022
Fully Convolutional DenseNets for semantic segmentation.

Introduction This repo contains the code to train and evaluate FC-DenseNets as described in The One Hundred Layers Tiramisu: Fully Convolutional Dense

485 Nov 26, 2022
A sequence of Jupyter notebooks featuring the 12 Steps to Navier-Stokes

CFD Python Please cite as: Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Sour

Barba group 2.6k Dec 30, 2022
Music library streaming app written in Flask & VueJS

djtaytay This is a little toy app made to explore Vue, brush up on my Python, and make a remote music collection accessable through a web interface. I

Ryan Tasson 6 May 27, 2022
Blender Add-On for slicing meshes with planes

MeshSlicer Blender Add-On for slicing meshes with multiple overlapping planes at once. This is a simple Blender addon to slice a silmple mesh with mul

52 Dec 12, 2022
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Daochen Zha 48 Nov 21, 2022
🚩🚩🚩

My CTF Challenges 2021 AIS3 Pre-exam / MyFirstCTF Name Category Keywords Difficulty β’Έβ“„β“‹β’Ύβ’Ή-①⑨ (MyFirstCTF Only) Reverse Baby β˜… Piano Reverse C#, .NET β˜…

6 Oct 28, 2021
High-quality implementations of standard and SOTA methods on a variety of tasks.

Uncertainty Baselines The goal of Uncertainty Baselines is to provide a template for researchers to build on. The baselines can be a starting point fo

Google 1.1k Dec 30, 2022
An unsupervised learning framework for depth and ego-motion estimation from monocular videos

SfMLearner This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghui Zhou, Matthew

Tinghui Zhou 1.8k Dec 30, 2022
Awesome Long-Tailed Learning

Awesome Long-Tailed Learning This repo pays specially attention to the long-tailed distribution, where labels follow a long-tailed or power-law distri

Stomach_ache 284 Jan 06, 2023
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
An Api for Emotion recognition.

PLAYEMO Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs. Use Cases Is Python your langu

greek geek 2 Jul 16, 2022
Code for intrusion detection system (IDS) development using CNN models and transfer learning

Intrusion-Detection-System-Using-CNN-and-Transfer-Learning This is the code for the paper entitled "A Transfer Learning and Optimized CNN Based Intrus

Western OC2 Lab 38 Dec 12, 2022
A PyTorch implementation of "Graph Classification Using Structural Attention" (KDD 2018).

GAM β €β € A PyTorch implementation of Graph Classification Using Structural Attention (KDD 2018). Abstract Graph classification is a problem with practic

Benedek Rozemberczki 259 Dec 05, 2022
PyAF is an Open Source Python library for Automatic Time Series Forecasting built on top of popular pydata modules.

PyAF (Python Automatic Forecasting) PyAF is an Open Source Python library for Automatic Forecasting built on top of popular data science python module

CARME Antoine 405 Jan 02, 2023
Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set) Description The PyOpenVINO is a spin-off product from my

Yasunori Shimura 7 Oct 31, 2022
This project aims at providing a concise, easy-to-use, modifiable reference implementation for semantic segmentation models using PyTorch.

Semantic Segmentation on PyTorch (include FCN, PSPNet, Deeplabv3, Deeplabv3+, DANet, DenseASPP, BiSeNet, EncNet, DUNet, ICNet, ENet, OCNet, CCNet, PSANet, CGNet, ESPNet, LEDNet, DFANet)

2.4k Jan 08, 2023
Testing and Estimation of structural breaks in Stata

xtbreak estimating and testing for many known and unknown structural breaks in time series and panel data. For an overview of xtbreak test see xtbreak

Jan Ditzen 13 Jun 19, 2022