本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

Overview

说明

本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

python依赖

tf2.3 、cv2、numpy、pyqt5

pyqt5安装

pip install PyQt5
pip install PyQt5-tools

使用

程序入口为main文件,pyqt5的界面为使用qt designer生成的。界面中核心的是4个控件,视频控件、计数控件、历史记录控件和分类结果对话框。 (在window.py中的class Ui_MainWindow中setupUi函数中的最后,做了计数控件、历史记录控件和模型、标签的加载)

视频控件

使用cv2抓取摄像头视频,并显示在videoLayout中的label控件label上。(名字就叫label..)(在main函数中使用语句 camera = Camera(1) # 0为笔记本自带摄像头 1为USB摄像头 抓取视频画面。) 以下是Ui_MainWindow类中与视频显示相关的部分:(如果部署在树莓派上,此处需要改动)

class Ui_MainWindow(object):

    def __init__(self, camera):
        self.camera = camera
        # Create a timer.
        self.timer = QTimer()
        self.timer.timeout.connect(self.nextFrameSlot)
        self.start()

    def start(self):
        self.camera.openCamera()
        self.timer.start(1000. / 24)

    def nextFrameSlot(self):
        rval, frame = self.camera.vc.read()
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        image = QImage(frame, frame.shape[1], frame.shape[0], QImage.Format_RGB888)
        pixmap = QPixmap.fromImage(image)
        self.label.setPixmap(pixmap)

计数控件

读取保存在static/CSV/count.csv文件中的分类次数,并显示在countLayout中的label控件count上。初始状态的static/CSV/count.csv文件为只有一个0。

历史记录控件

读取保存在static/CSV/history.csv文件中的历史记录(第一列为分类结果,第二列为照片路径),并显示在listLayout中的QListWidget控件listWidget上。初始状态的static/CSV/history.csv文件为空。 这里只显示了最近15条记录,代码在csv_utils.py中的read_history_csv函数。

分类结果对话框

触发次对话框的条件是点击界面上的pushButton(绑定代码位于window.py中的class Ui_MainWindow中setupUi函数),触发的函数为class Ui_MainWindow中的show_dialog函数。如果部署在树莓派上可改为由距离传感器触发。

  self.pushButton.clicked.connect(self.show_dialog)

这部分的核心就是show_dialog函数。要实现拍照,调用分类模型,在对话框关闭后还实现了主界面计数控件和历史记录控件的更新。(耦合性较大..) 文件的保存方面只是使用了CSV文件来保存计数、结果和照片路径。(初始状态的static/CSV/count.csv文件为只有一个0。初始状态的static/CSV/history.csv文件为空。)

    def show_dialog(self):
        count_csv_path = "static/CSV/count.csv"  # 计数
        history_csv_path = "static/CSV/history.csv"  # 历史记录
        image_path = "static/photos/"  # 照片目录
        classification = "test"  # 测试用的

        timeout = 4 # 对话框停留时间
        ret, frame = self.camera.vc.read()  # 拍照
        self.history_photo_num = self.history_photo_num + 1  # 照片自增命名
        image_path = image_path + str(self.history_photo_num) + ".jpg"  # 保存照片的路径
        cv2.imwrite(image_path, frame)  # 保存
        # time.sleep(1)

        image = utils.load_image(image_path)
        classify_model = self.classify_model  # 模型、标签的初始化在setupUi函数最后
        label_to_content = self.label_to_content
        prediction, label = classify_image(image, classify_model) # 调用模型

        print('-' * 100)
        print(f'Test one image: {image_path}')
        print(f'classification: {label_to_content[str(label)]}\nconfidence: {prediction[0, label]}')
        print('-' * 100)

        classification = str(label_to_content[str(label)])  # 分类结果
        confidence = str(f'{prediction[0, label]}')  # 置信度
        confidence = confidence[0:5]  # 保留三位小数
        self.dialog = Dialog(timeout=timeout, classification=classification, confidence=confidence)  # 传入结果和置信度
        self.dialog.show()
        self.dialog.exec() # 对话框退出

        # 更新历史记录中count数目
        count_list = read_count_csv(filename=count_csv_path)
        count = int(count_list[0]) + 1
        self.count.setText(str(count))
        write_count_csv(filename=count_csv_path, count=count)

        # 更新历史记录
        write_history_csv(history_csv_path, classification=classification, photo_path=image_path)
        self.listWidget.clear()
        history_list = read_history_csv(history_csv_path)
        for record in history_list:  # 每次都是全部重新加载,效率较低...
            item = QtWidgets.QListWidgetItem(QtGui.QIcon(record[1]), record[0])  # 0为类别,1为图片路径
            self.listWidget.addItem(item)
Owner
just swag
Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch

Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch Reference Paper URL Author: Yi Tay, Dara Bahri, Donald Metzler

Myeongjun Kim 66 Nov 30, 2022
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Matthias Fey 139 Dec 25, 2022
We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning Update: The lastest code will be updated in this branch. Pleas

ETHZ ASL 27 Dec 29, 2022
Python implementation of "Elliptic Fourier Features of a Closed Contour"

PyEFD An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1]. Installation pip install pyef

Henrik Blidh 71 Dec 09, 2022
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Davis Rempe 207 Jan 05, 2023
GAN example for Keras. Cuz MNIST is too small and there should be something more realistic.

Keras-GAN-Animeface-Character GAN example for Keras. Cuz MNIST is too small and there should an example on something more realistic. Some results Trai

160 Sep 20, 2022
FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery (TGRS)

FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery by Ailong Ma, Junjue Wang*, Yanfei Zhon

Kingdrone 43 Jan 05, 2023
Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

HAIS Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021) by Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang*. (*) Corresp

Hust Visual Learning Team 145 Jan 05, 2023
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

51 Nov 29, 2022
Picasso: A CUDA-based Library for Deep Learning over 3D Meshes

The Picasso Library is intended for complex real-world applications with large-scale surfaces, while it also performs impressively on the small-scale applications over synthetic shape manifolds. We h

97 Dec 01, 2022
An 16kHz implementation of HiFi-GAN for soft-vc.

HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa

Benjamin van Niekerk 42 Dec 27, 2022
MoveNet Single Pose on DepthAI

MoveNet Single Pose tracking on DepthAI Running Google MoveNet Single Pose models on DepthAI hardware (OAK-1, OAK-D,...). A convolutional neural netwo

64 Dec 29, 2022
Artificial Neural network regression model to predict the energy output in a combined cycle power plant.

Energy_Output_Predictor Artificial Neural network regression model to predict the energy output in a combined cycle power plant. Abstract Energy outpu

1 Feb 11, 2022
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.

Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio

Simon Kohl 498 Dec 26, 2022
Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image This repository contains the code for the following paper: R. Hu,

Meta Research 37 Jan 04, 2023
Deep learning library featuring a higher-level API for TensorFlow.

TFLearn: Deep learning library featuring a higher-level API for TensorFlow. TFlearn is a modular and transparent deep learning library built on top of

TFLearn 9.6k Jan 02, 2023
A Machine Teaching Framework for Scalable Recognition

MEMORABLE This repository contains the source code accompanying our ICCV 2021 paper. A Machine Teaching Framework for Scalable Recognition Pei Wang, N

2 Dec 08, 2021
RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation (CIKM'17)

RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation This is the implementation of RATE: Overcoming Noise and Spar

Yu Zhang 5 Feb 10, 2022