Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Overview

Contact and Human Dynamics from Monocular Video

This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guibas, Aaron Hertzmann, Bryan Russell, Ruben Villegas, and Jimei Yang. For more information, see the project webpage.

Teaser

Environment Setup

Note: the code in this repo has only been tested on Ubuntu 16.04.

First create and activate a virtual environment to install dependencies for the code in this repo. For example with conda:

  • conda create -n contact_dynamics_env python=3.6
  • conda activate contact_dynamics_env
  • pip install -r requirements.txt

Note the package versions in the requirements file are the exact ones tested on, but may need to be modified for your system. The code also uses ffmpeg.

This codebase requires the installation of a number of external dependencies that have their own installation instructions/environments, e.g., you will likely want to create a different environment just to run Monocular Total Capture below. The following external dependencies are only necessary to run the full pipeline (both contact detection and physical optimization). If you're only interested in detecting foot contacts, it is only necessary to install OpenPose.

To get started, from the root of this repo mkdir external.

Monocular Total Capture (MTC)

The full pipeline runs on the output from Monocular Total Capture (MTC). To run MTC, you must clone this fork which contains a number of important modifications:

  • cd external
  • git clone https://github.com/davrempe/MonocularTotalCapture.git
  • Follow installation instructions in that repo to set up the MTC environment.

TOWR

The physics-based optimization takes advantage of the TOWR library. Specifically, this fork must be used:

  • cd external
  • git clone https://github.com/davrempe/towr.git
  • Follow the intallation instructions to build and install the library using cmake.

Building Physics-Based Optimization

Important Note: if you did not use the HSL routines when building IPopt as suggested, in towr_phys_optim/phys_optim.cpp you will need to change the line solver->SetOption("linear_solver", "MA57"); to solver->SetOption("linear_solver", "mumps"); before building our physics-based optimization. This uses the slower MUMPS solver and should be avoided if possible.

After building and installing TOWR, we must build the physics-based optimization part of the pipeline. To do this from the repo root:

cd towr_phys_optim
mkdir build && cd build
cmake .. -DCMAKE_BUILD_TYPE=Release
make

Downloads

Synthetic Dataset

The synthetic dataset used to train our foot contact detection network contains motion sequences on various Mixamo characters. For each sequence, the dataset contains rendered videos from 2 different camera viewpoints, camera parameters, annotated foot contacts, detected 2D pose (with OpenPose), and the 3D motion as a bvh file. Note, this dataset is only needed if you want to retrain the contact detection network.

To download the dataset:

  • cd data
  • bash download_full.sh to download the full (52 GB) dataset or bash download_sample.sh for a sample version (715 MB) with limited motions from 2 characters.

Pretrained Weights

To download pretrained weights for the foot contact detection network, run:

  • cd pretrained_weights
  • bash download.sh

Running the Pipeline on Real Videos

Next we'll walk through running each part of the pipeline on a set of real-world videos. A small example dataset with 2 videos is provided in data/example_data. Data should always be structured as shown in example_data where each video is placed in its own directory named the same as the video file to be processed - inputs and outputs for parts of the pipeline will be saved in these directories. There is a helper script to create this structure from a directory of videos.

The first two steps in the pipeline are running MTC/OpenPose on the video to get 3D/2D pose inputs, followed by foot contact detection using the 2D poses.

Running MTC

The first step is to run MTC and OpenPose. This will create the necessary data (2D and 3D poses) to run both foot contact detection and physical optimization.

The scripts/run_totalcap.py is used to run MTC. It is invoked on a directory containg any number of videos, each in their own directory, and will run MTC on all contained videos. The script runs MTC, post-processes the results to be used in the rest of the pipeline, and saves videos visualizing the final output. The script copies all the needed outputs (in particular tracked_results.json and the OpenPose detection openpose_results directly to the given data directory). To run MTC for the example data, first cd scripts then:

python run_totalcap.py --data ../data/example_data --out ../output/mtc_viz_out --totalcap ../external/MonocularTotalCapture

Alternatively, if you only want to do foot contact detection (and don't care about the physical optimization), you can instead run OpenPose by itself without MTC. There is a helper script to do this in scripts:

python run_openpose.py --data ../data/example_data --out ../data/example_data --openpose ../external/openpose --hands --face --save-video

This runs OpenPose and saves the outputs directly to the same data directory for later use in contact detection.

Foot Contact Detection

The next step is using the learned neural network to detect foot contacts from the 2D pose sequence.

To run this, first download the pretrained network weights as detailed above. Then to run on the example data cd scripts and then:

python run_detect_contacts.py --data ../data/example_data --weights ../pretrained_weights/contact_detection_weights.pth

This will detect and save foot contacts for each video in the data directory to a file called foot_contacts.npy. This is simply an Fx4 array where F is the number of frames; for each frame there is a binary contact label for the left heel, left toe, right heel, and right toe, in that order.

You may also optionally add the --viz flag to additionally save a video with overlaid detections (currently requires a lot of memory for videos more than a few seconds long).

Trajectory Optimization

Finally, we are able to run the kinematic optimization, retargeting, and physics-based optimization steps.

There is a single script to run all these - simply make sure you are in the scripts directory, then run:

python run_phys_mocap.py --data ../data/example_data --character ybot

This command will do the optimization directly on the YBot Mixamo character (ty and skeletonzombie are also availble). To perform the optimization on the skeleton estimated from video (i.e., to not use the retargeting step), give the argument --character combined.

Each of the steps in this pipeline can be run individually if desired, see how to do this in run_phys_mocap.py.

Visualize Results with Blender

We can visualize results on a character using Blender. Before doing this, ensure Blender v2.79b is installed.

You will first need to download the Blender scene we use for rendering. From the repo root cd data then bash download_viz.sh will place viz_scene.blend in the data directory. Additionally, you need to download the character T-pose FBX file from the Mixamo website; in this example we are using the YBot character.

To visualize the result for a sequence, make sure you are in the src directory and use something like:

blender -b -P viz/viz_blender.py -- --results ../data/example_data/dance1 --fbx ../data/fbx/ybot.fbx --scene ../data/viz_scene.blend --character ybot --out ../output/rendered_res --fps 24 --draw-com --draw-forces

Note that there are many options to customize this rendering - please see the script for all these. Also the side view is set up heuristically, you may need to manually tune setup_camera depending on your video.

Training and Testing Contact Detection Network on Synthetic Data

To re-train the contact detection network on the synthetic dataset and run inference on the test set use the following:

>> cd src
# Train the contact detection network
>> python contact_learning/train.py --data ../data/synthetic_dataset --out ../output/contact_learning_results
# Run detection on the test set
>> python contact_learning/test.py --data ../data/synthetic_dataset --out ../output/contact_learning_results --weights-path ../output/contact_learning_results/op_only_weights_BEST.pth --full-video

Citation

If you found this code or paper useful, please consider citing:

@inproceedings{RempeContactDynamics2020,
    author={Rempe, Davis and Guibas, Leonidas J. and Hertzmann, Aaron and Russell, Bryan and Villegas, Ruben and Yang, Jimei},
    title={Contact and Human Dynamics from Monocular Video},
    booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
    year={2020}
}

Questions?

If you run into any problems or have questions, please create an issue or contact Davis ([email protected]).

Owner
Davis Rempe
Davis Rempe
Pytorch implementation for Patient Knowledge Distillation for BERT Model Compression

Patient Knowledge Distillation for BERT Model Compression Knowledge distillation for BERT model Installation Run command below to install the environm

Siqi 180 Dec 19, 2022
Biomarker identification for COVID-19 Severity in BALF cells Single-cell RNA-seq data

scBALF Covid-19 dataset Analysis Here is the Github page that has the codes for the bioinformatics pipeline described in the paper COVID-Datathon: Bio

Nami Niyakan 2 May 21, 2022
Simple Python application to transform Serial data into OSC messages

SerialToOSC-Bridge Simple Python application to transform Serial data into OSC messages. The current purpose is to be a compatibility layer between ha

Division of Applied Acoustics at Chalmers University of Technology 3 Jun 03, 2021
Code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizability of Cross-Task Neural Architecture Search.

TransNAS-Bench-101 This repository contains the publishable code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizabili

Yawen Duan 17 Nov 20, 2022
This repo is a C++ version of yolov5_deepsort_tensorrt. Packing all C++ programs into .so files, using Python script to call C++ programs further.

yolov5_deepsort_tensorrt_cpp Introduction This repo is a C++ version of yolov5_deepsort_tensorrt. And packing all C++ programs into .so files, using P

41 Dec 27, 2022
OpenMMLab Image Classification Toolbox and Benchmark

Introduction English | 简体中文 MMClassification is an open source image classification toolbox based on PyTorch. It is a part of the OpenMMLab project. D

OpenMMLab 1.8k Jan 03, 2023
Unofficial PyTorch Implementation of AHDRNet (CVPR 2019)

AHDRNet-PyTorch This is the PyTorch implementation of Attention-guided Network for Ghost-free High Dynamic Range Imaging (CVPR 2019). The official cod

Yutong Zhang 4 Sep 08, 2022
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
Boundary IoU API (Beta version)

Boundary IoU API (Beta version) Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov [arXiv] [Project] [BibTeX] This API is

Bowen Cheng 177 Dec 29, 2022
Demo notebooks for Qiskit application modules demo sessions (Oct 8 & 15):

qiskit-application-modules-demo-sessions This repo hosts demo notebooks for the Qiskit application modules demo sessions hosted on Qiskit YouTube. Par

Qiskit Community 46 Nov 24, 2022
All supplementary material used by me while TA-ing CS3244: Machine Learning

CS3244-Tutorial-Material All supplementary material used by me while TA-ing CS3244: Machine Learning at NUS School of Computing. What is this? I teach

Rishabh Anand 18 Sep 23, 2022
Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Google Cloud Storage

Keepsake Version control for machine learning. Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Goo

Replicate 1.6k Dec 29, 2022
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

Hila Chefer 489 Jan 07, 2023
Python based framework for Automatic AI for Regression and Classification over numerical data.

Python based framework for Automatic AI for Regression and Classification over numerical data. Performs model search, hyper-parameter tuning, and high-quality Jupyter Notebook code generation.

BlobCity, Inc 141 Dec 21, 2022
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting

Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting 1. Classification Task PyTorch implementat

Yongho Kim 0 Apr 24, 2022
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023
AirLoop: Lifelong Loop Closure Detection

AirLoop This repo contains the source code for paper: Dasong Gao, Chen Wang, Sebastian Scherer. "AirLoop: Lifelong Loop Closure Detection." arXiv prep

Chen Wang 53 Jan 03, 2023
A deep learning model for style-specific music generation.

DeepJ: A model for style-specific music generation https://arxiv.org/abs/1801.00887 Abstract Recent advances in deep neural networks have enabled algo

Henry Mao 704 Nov 23, 2022
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022