Learning to Stylize Novel Views

Overview

Learning to Stylize Novel Views

[Project] [Paper]

Contact: Hsin-Ping Huang ([email protected])

Introduction

We tackle a 3D scene stylization problem - generating stylized images of a scene from arbitrary novel views given a set of images of the same scene and a reference image of the desired style as inputs. Direct solution of combining novel view synthesis and stylization approaches lead to results that are blurry or not consistent across different views. We propose a point cloud-based method for consistent 3D scene stylization. First, we construct the point cloud by back-projecting the image features to the 3D space. Second, we develop point cloud aggregation modules to gather the style information of the 3D scene, and then modulate the features in the point cloud with a linear transformation matrix. Finally, we project the transformed features to 2D space to obtain the novel views. Experimental results on two diverse datasets of real-world scenes validate that our method generates consistent stylized novel view synthesis results against other alternative approaches.

Paper

Learning to Stylize Novel Views
Hsin-Ping Huang, Hung-Yu Tseng, Saurabh Saini, Maneesh Singh, and Ming-Hsuan Yang
IEEE International Conference on Computer Vision (ICCV), 2021

Please cite our paper if you find it useful for your research.

@inproceedings{huang_2021_3d_scene_stylization,
   title = {Learning to Stylize Novel Views},
   author={Huang, Hsin-Ping and Tseng, Hung-Yu and Saini, Saurabh and Singh, Maneesh and Yang, Ming-Hsuan},
   booktitle = {ICCV},
   year={2021}
}

Installation and Usage

Kaggle account

  • To download the WikiArt dataset, you would need to register for a Kaggle account.
  1. Sign up for a Kaggle account at https://www.kaggle.com.
  2. Go to top right and select the 'Account' tab of your user profile (https://www.kaggle.com/username/account)
  3. Select 'Create API Token'. This will trigger the download of kaggle.json.
  4. Place this file in the location ~/.kaggle/kaggle.json
  5. chmod 600 ~/.kaggle/kaggle.json

Install

  • Clone this repo
git clone https://github.com/hhsinping/stylescene.git
cd stylescene
  • Create conda environment and install required packages
  1. Python 3.9
  2. Pytorch 1.7.1, Torchvision 0.8.2, Pytorch-lightning 0.7.1
  3. matplotlib, scikit-image, opencv-python, kaggle
  4. Pointnet2_Pytorch
  5. Pytorch3D 0.4.0
conda create -n stylescene python=3.9.1
conda activate stylescene
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 -f https://download.pytorch.org/whl/torch_stable.html
pip install matplotlib==3.4.1 scikit-image==0.18.1 opencv-python==4.5.1.48 pytorch-lightning==0.7.1 kaggle
pip install "git+git://github.com/erikwijmans/Pointnet2_PyTorch.git#egg=pointnet2_ops&subdirectory=pointnet2_ops_lib"
curl -LO https://github.com/NVIDIA/cub/archive/1.10.0.tar.gz
tar xzf 1.10.0.tar.gz
export CUB_HOME=$PWD/cub-1.10.0
git clone https://github.com/facebookresearch/pytorch3d.git
cd pytorch3d
git checkout 340662e
pip install -e .
cd -

Our code has been tested on Ubuntu 20.04, CUDA 11.1 with a RTX 2080 Ti GPU.

Datasets

  • Download datasets, pretrained model, complie C++ code using the following script. This script will:
  1. Download Tanks and Temples dataset
  2. Download continous testing sequences of Truck, M60, Train, Playground scenes
  3. Download 120 testing styles
  4. Download WikiArt dataset from Kaggle
  5. Download pretrained models
  6. Complie the c++ code in preprocess/ext/preprocess/ and stylescene/ext/preprocess/
bash download_data.sh
  • Preprocess Tanks and Temples dataset

This script will generate points.npy and r31.npy for each training and testing scene.
points.npy records the 3D coordinates of the re-projected point cloud and its correspoinding 2D positions in source images
r31.npy contains the extracted VGG features of sources images

cd preprocess
python Get_feat.py
cd ..

Testing example

cd stylescene/exp
vim ../config.py
Set Train = False
Set Test_style = [0-119 (refer to the index of style images in ../../style_data/style120/)]

To evaluate the network you can run

python exp.py --net fixed_vgg16unet3_unet4.64.3 --cmd eval --iter [n_iter/last] --eval-dsets tat-subseq --eval-scale 0.25

Generated images can be found at experiments/tat_nbs5_s0.25_p192_fixed_vgg16unet3_unet4.64.3/tat_subseq_[sequence_name]_0.25_n4/

Training example

cd stylescene/exp
vim ../config.py
Set Train = True

To train the network from scratch you can run

python exp.py --net fixed_vgg16unet3_unet4.64.3 --cmd retrain

To train the network from a checkpoint you can run

python exp.py --net fixed_vgg16unet3_unet4.64.3 --cmd resume

Generated images can be found at ./log
Saved model and training log can be found at experiments/tat_nbs5_s0.25_p192_fixed_vgg16unet3_unet4.64.3/

Acknowledgement

The implementation is partly based on the following projects: Free View Synthesis, Linear Style Transfer, PointNet++, SynSin.

A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented in Python.

Reinforcement-Learning-Notebooks A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented

Pulkit Khandelwal 1k Dec 28, 2022
Constrained Language Models Yield Few-Shot Semantic Parsers

Constrained Language Models Yield Few-Shot Semantic Parsers This repository contains tools and instructions for reproducing the experiments in the pap

Microsoft 43 Nov 23, 2022
Blender scripts for computing geodesic distance

GeoDoodle Geodesic distance computation for Blender meshes Table of Contents Overivew Usage Implementation Overview This addon provides an operator fo

20 Jun 08, 2022
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

567 Dec 26, 2022
HistoKT: Cross Knowledge Transfer in Computational Pathology

HistoKT: Cross Knowledge Transfer in Computational Pathology Exciting News! HistoKT has been accepted to ICASSP 2022. HistoKT: Cross Knowledge Transfe

Mahdi S. Hosseini 5 Jan 05, 2023
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Ibai Gorordo 42 Oct 07, 2022
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

BraTS(Brain Tumour Segmentation) using V-Net This project is an approach to dete

Rituraj Dutta 7 Nov 27, 2022
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

imutils A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displ

Adrian Rosebrock 4.3k Jan 08, 2023
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

Zhankui (Aaron) He 8 Jul 30, 2022
Official repository for "Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring".

RNN-MBP Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring (AAAI-2022) by Chao Zhu, Hang Dong, Jinshan Pan

SIV-LAB 22 Aug 31, 2022
Semi-Autoregressive Transformer for Image Captioning

Semi-Autoregressive Transformer for Image Captioning Requirements Python 3.6 Pytorch 1.6 Prepare data Please use git clone --recurse-submodules to clo

YE Zhou 23 Dec 09, 2022
A machine learning malware analysis framework for Android apps.

🕵️ A machine learning malware analysis framework for Android apps. ☢️ DroidDetective is a Python tool for analysing Android applications (APKs) for p

James Stevenson 77 Dec 27, 2022
Sharpened cosine similarity torch - A Sharpened Cosine Similarity layer for PyTorch

Sharpened Cosine Similarity A layer implementation for PyTorch Install At your c

Brandon Rohrer 203 Nov 30, 2022
Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression

Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression We provide the code used in our paper "How Good are Low-Rank Approximation

Aristeidis (Ares) Panos 0 Dec 13, 2021
Repository of 3D Object Detection with Pointformer (CVPR2021)

3D Object Detection with Pointformer This repository contains the code for the paper 3D Object Detection with Pointformer (CVPR 2021) [arXiv]. This wo

Zhuofan Xia 117 Jan 06, 2023
FaRL for Facial Representation Learning

FaRL for Facial Representation Learning This repo hosts official implementation of our paper General Facial Representation Learning in a Visual-Lingui

Microsoft 19 Jan 05, 2022
Delving into Localization Errors for Monocular 3D Object Detection, CVPR'2021

Delving into Localization Errors for Monocular 3D Detection By Xinzhu Ma, Yinmin Zhang, Dan Xu, Dongzhan Zhou, Shuai Yi, Haojie Li, Wanli Ouyang. Intr

XINZHU.MA 124 Jan 04, 2023
⚡️Optimizing einsum functions in NumPy, Tensorflow, Dask, and more with contraction order optimization.

Optimized Einsum Optimized Einsum: A tensor contraction order optimizer Optimized einsum can significantly reduce the overall execution time of einsum

Daniel Smith 653 Dec 30, 2022