A machine learning malware analysis framework for Android apps.

Overview

🕵️ A machine learning malware analysis framework for Android apps. ☢️


DroidDetective is a Python tool for analysing Android applications (APKs) for potential malware related behaviour and configurations. When provided with a path to an application (APK file) Droid Detective will make a prediction (using it's ML model) of if the application is malicious. Features and qualities of Droid Detective include:

  • Analysing which of ~330 permissions are specified in the application's AndroidManifest.xml file. 🙅
  • Analysing the number of standard and proprietary permissions in use in the application's AndroidManifest.xml file. 🧮
  • Using a RandomForest machine learning classifier, trained off the above data, from ~14 malware families and ~100 Google Play Store applications. 💻

🤖 Getting Started

Installation

All DroidDetective dependencies can be installed manually or via the requirements file, with

pip install -r REQUIREMENTS.txt

DroidDetective has been tested on both Windows 10 and Ubuntu 18.0 LTS.

Usage

DroidDetective can be run by providing the Python file with an APK as a command line parameter, such as:

python DroidDetective.py myAndroidApp.apk

If an apk_malware.model file is not present, then the tooling will first train the model and will require a training set of APKs in both a folder at the root of the project called malware and another called normal. Once run successfully a result will be printed onto the CLI on if the model has identified the APK to be malicious or benign. An example of this output can be seen below:

>> Analysed file 'com.android.camera2.apk', identified as not malware.

An additional parameter can be provided to DroidDetective.py as a Json file to save the results to. If this Json file already exists the results of this run will be appended to the Json file.

python DroidDetective.py myAndroidApp.apk output.json

An example of this output Json is as follows:

{
    "com.android.camera2": false,
}

⚗️ Data Science | The ML Model

DroidDetective is a Python tool for analyzing Android applications (APKs) for potential malware related behaviour. This works by training a Random Forest classifier on information derived from both known malware APKs and standard APKs available on the Android app store. This tooling comes pre-trained, however, the model can be re-trained on a new dataset at any time. ⚙️

This model currently uses permissions from an APKs AndroidManifest.xml file as a feature set. This works by creating a dictionary of each standard Android permission and setting the feature to 1 if the permission is present in the APK. Similarly, a feature is added for the amount of permissions in use in the manifest and for the amount of unidentified permissions found in the manifest.

The pre-trained model was trained off approximately 14 malware families (each with one or more APK files), located from ashisdb's repository, and approximately 100 normal applications located from the Google Play Store.

The below denotes the statistics for this ML model:

Accuracy: 0.9310344827586207
Recall: 0.9166666666666666
Precision: 0.9166666666666666
F-Measure: 0.9166666666666666

The top 10 highest weighted features (i.e. Android permissions) used by this model, for identifying malware, can be seen below:

"android.permission.SYSTEM_ALERT_WINDOW": 0.019091367939223395,
"android.permission.ACCESS_NETWORK_STATE": 0.021001765263234648,
"android.permission.ACCESS_WIFI_STATE": 0.02198962579120518,
"android.permission.RECEIVE_BOOT_COMPLETED": 0.026398914436102188,
"android.permission.GET_TASKS": 0.03595458598076517,
"android.permission.WAKE_LOCK": 0.03908212881520419,
"android.permission.WRITE_SMS": 0.057041576632290585,
"android.permission.INTERNET": 0.08816028225034145,
"android.permission.WRITE_EXTERNAL_STORAGE": 0.09835914154294739,
"other_permission": 0.10189463965313218,
"num_of_permissions": 0.12392224814084198

📜 License

GNU General Public License v3.0

Owner
James Stevenson
I’m a Software Engineer and Security Researcher, with a background of over five years in the computer security industry.
James Stevenson
Official implementation of the network presented in the paper "M4Depth: A motion-based approach for monocular depth estimation on video sequences"

M4Depth This is the reference TensorFlow implementation for training and testing depth estimation models using the method described in M4Depth: A moti

Michaël Fonder 76 Jan 03, 2023
AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning

AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning AutoPentest-DRL is an automated penetration testing framework based o

Cyber Range Organization and Design Chair 217 Jan 01, 2023
A map update dataset and benchmark

MUNO21 MUNO21 is a dataset and benchmark for machine learning methods that automatically update and maintain digital street map datasets. Previous dat

16 Nov 30, 2022
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
"NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search".

NAS-Bench-301 This repository containts code for the paper: "NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search". The

AutoML-Freiburg-Hannover 57 Nov 30, 2022
The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text"

Finnish Dialect Identification The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text". We present a te

Rootroo Ltd 2 Dec 25, 2021
Source code for the paper: Variance-Aware Machine Translation Test Sets (NeurIPS 2021 Datasets and Benchmarks Track)

Variance-Aware-MT-Test-Sets Variance-Aware Machine Translation Test Sets License See LICENSE. We follow the data licensing plan as the same as the WMT

NLP2CT Lab, University of Macau 5 Dec 21, 2021
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

184 Jan 04, 2023
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
Nightmare-Writeup - Writeup for the Nightmare CTF Challenge from 2022 DiceCTF

Nightmare: One Byte to ROP // Alternate Solution TLDR: One byte write, no leak.

1 Feb 17, 2022
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
Gym environments used in the paper: "Developmental Reinforcement Learning of Control Policy of a Quadcopter UAV with Thrust Vectoring Rotors"

gym_multirotor Gym to train reinforcement learning agents on UAV platforms Quadrotor Tiltrotor Requirements This package has been tested on Ubuntu 18.

Aditya M. Deshpande 19 Dec 29, 2022
A PyTorch Implementation of SphereFace.

SphereFace A PyTorch Implementation of SphereFace. The code can be trained on CASIA-Webface and the best accuracy on LFW is 99.22%. SphereFace: Deep H

carwin 685 Dec 09, 2022
Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).

Robust On-Policy Data Collection for Data-Efficient Policy Evaluation Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evalua

Autonomous Agents Research Group (University of Edinburgh) 2 Oct 09, 2022
Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
Parris, the automated infrastructure setup tool for machine learning algorithms.

README Parris, the automated infrastructure setup tool for machine learning algorithms. What Is This Tool? Parris is a tool for automating the trainin

Joseph Greene 319 Aug 02, 2022
CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes

CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes. CHERRY is based on a deep learning model, which consists of a graph convolutional encoder and a link

Kenneth Shang 12 Dec 15, 2022
Code for Massive-scale Decoding for Text Generation using Lattices

Massive-scale Decoding for Text Generation using Lattices Jiacheng Xu, Greg Durrett TL;DR: a new search algorithm to construct lattices encoding many

Jiacheng Xu 37 Dec 18, 2022
Self-attentive task GAN for space domain awareness data augmentation.

SATGAN TODO: update the article URL once published. Article about this implemention The self-attentive task generative adversarial network (SATGAN) le

Nathan 2 Mar 24, 2022
a basic code repository for basic task in CV(classification,detection,segmentation)

basic_cv a basic code repository for basic task in CV(classification,detection,segmentation,tracking) classification generate dataset train predict de

1 Oct 15, 2021