A new play-and-plug method of controlling an existing generative model with conditioning attributes and their compositions.

Related tags

Deep LearningLACE
Overview

Controllable and Compositional Generation with Latent-Space Energy-Based Models

Python 3.8 pytorch 1.7.1 Torchdiffeq 0.2.1

Teaser image Teaser image

Official PyTorch implementation of the NeurIPS 2021 paper:
Controllable and Compositional Generation with Latent-Space Energy-Based Models
Weili Nie, Arash Vahdat, Anima Anandkumar
https://nvlabs.github.io/LACE

Abstract: Controllable generation is one of the key requirements for successful adoption of deep generative models in real-world applications, but it still remains as a great challenge. In particular, the compositional ability to generate novel concept combinations is out of reach for most current models. In this work, we use energy-based models (EBMs) to handle compositional generation over a set of attributes. To make them scalable to high-resolution image generation, we introduce an EBM in the latent space of a pre-trained generative model such as StyleGAN. We propose a novel EBM formulation representing the joint distribution of data and attributes together, and we show how sampling from it is formulated as solving an ordinary differential equation (ODE). Given a pre-trained generator, all we need for controllable generation is to train an attribute classifier. Sampling with ODEs is done efficiently in the latent space and is robust to hyperparameters. Thus, our method is simple, fast to train, and efficient to sample. Experimental results show that our method outperforms the state-of-the-art in both conditional sampling and sequential editing. In compositional generation, our method excels at zero-shot generation of unseen attribute combinations. Also, by composing energy functions with logical operators, this work is the first to achieve such compositionality in generating photo-realistic images of resolution 1024x1024.

Requirements

  • Linux and Windows are supported, but we recommend Linux for performance and compatibility reasons.
  • 1 high-end NVIDIA GPU with at least 24 GB of memory. We have done all testing and development using a single NVIDIA V100 GPU with memory size 32 GB.
  • 64-bit Python 3.8.
  • CUDA=10.0 and docker must be installed first.
  • Installation of the required library dependencies with Docker:
    docker build -f lace-cuda-10p0.Dockerfile --tag=lace-cuda-10-0:0.0.1 .
    docker run -it -d --gpus 0 --name lace --shm-size 8G -v $(pwd):/workspace -p 5001:6006 lace-cuda-10-0:0.0.1
    docker exec -it lace bash

Experiments on CIFAR-10

The CIFAR10 folder contains the codebase to get the main results on the CIFAR-10 dataset, where the scripts folder contains the necessary bash scripts to run the code.

Data preparation

Before running the code, you have to download the data (i.e., the latent code and label pairs) from here and unzip it to the CIFAR10 folder. Or you can go to the folder CIFAR10/prepare_data and follow the instructions to generate the data.

Training

To train the latent classifier, you can run:

bash scripts/run_clf.sh

In the script run_clf.sh, the variable x can be specified to w or z, representing that the latent classifier is trained in the w-space or z-space of StyleGAN, respectively.

Sampling

To get the conditional sampling results with the ODE or Langevin dynamics (LD) sampler, you can run:

# ODE
bash scripts/run_cond_ode_sample.sh

# LD
bash scripts/run_cond_ld_sample.sh

By default, we set x to w, meaning we use the w-space classifier, because we find our method works the best in w-space. You can change the value of x to z or i to use the classifier in z-space or pixel space, for a comparison.

To compute the conditional accuracy (ACC) and FID scores in conditional sampling with the ODE or LD sampler, you can run:

# ODE
bash scripts/run_cond_ode_score.sh

# LD
bash scripts/run_cond_ld_score.sh

Note that:

  1. For the ACC evaluation, you need a pre-trained image classifier, which can be downloaded as instructed here;

  2. For the FID evaluation, you need to have the FID reference statistics computed beforehand. You can go to the folder CIFAR10/prepare_data and follow the instructions to compute the FID reference statistics with real images sampled from CIFAR-10.

Experiments on FFHQ

The FFHQ folder contains the codebase for getting the main results on the FFHQ dataset, where the scripts folder contains the necessary bash scripts to run the code.

Data preparation

Before running the code, you have to download the data (i.e., 10k pairs of latent variables and labels) from here (originally from StyleFlow) and unzip it to the FFHQ folder.

Training

To train the latent classifier, you can run:

bash scripts/run_clf.sh

Note that each att_name (i.e., glasses) in run_clf.sh corresponds to a separate attribute classifier.

Sampling

First, you have to get the pre-trained StyleGAN2 (config-f) by following the instructions in Convert StyleGAN2 weight from official checkpoints.

Conditional sampling

To get the conditional sampling results with the ODE or LD sampler, you can run:

# ODE
bash scripts/run_cond_ode_sample.sh

# LD
bash scripts/run_cond_ld_sample.sh

To compute the conditional accuracy (ACC) and FID scores in conditional sampling with the ODE or LD sampler, you can run:

# ODE
bash scripts/run_cond_ode_score.sh

# LD
bash scripts/run_cond_ld_score.sh

Note that:

  1. For the ACC evaluation, you need to train an FFHQ image classifier, as instructed here;

  2. For the FID evaluation, you need to have the FID reference statistics computed beforehand. You can go to the folder FFHQ/prepare_models_data and follow the instructions to compute the FID reference statistics with the StyleGAN generated FFHQ images.

Sequential editing

To get the qualitative and quantitative results of sequential editing, you can run:

# User-specified sampling
bash scripts/run_seq_edit_sample.sh

# ACC and FID
bash scripts/run_seq_edit_score.sh

Note that:

  • Similarly, you first need to train an FFHQ image classifier and get the FID reference statics to compute ACC and FID score by following the instructions, respectively.

  • To get the face identity preservation (ID) score, you first need to download the pre-trained ArcFace network, which is publicly available here, to the folder FFHQ/pretrained/metrics.

Compositional Generation

To get the results of zero-shot generation on novel attribute combinations, you can run:

bash scripts/run_zero_shot.sh

To get the results of compositions of energy functions with logical operators, we run:

bash scripts/run_combine_energy.sh

Experiments on MetFaces

The MetFaces folder contains the codebase for getting the main results on the MetFaces dataset, where the scripts folder contains the necessary bash scripts to run the code.

Data preparation

Before running the code, you have to download the data (i.e., 10k pairs of latent variables and labels) from here and unzip it to the MetFaces folder. Or you can go to the folder MetFaces/prepare_data and follow the instructions to generate the data.

Training

To train the latent classifier, you can run:

bash scripts/run_clf.sh

Note that each att_name (i.e., yaw) in run_clf.sh corresponds to a separate attribute classifier.

Sampling

To get the conditional sampling and sequential editing results, you can run:

# conditional sampling
bash scripts/run_cond_sample.sh

# sequential editing
bash scripts/run_seq_edit_sample.sh

Experiments on AFHQ-Cats

The AFHQ folder contains the codebase for getting the main results on the AFHQ-Cats dataset, where the scripts folder contains the necessary bash scripts to run the code.

Data preparation

Before running the code, you have to download the data (i.e., 10k pairs of latent variables and labels) from here and unzip it to the AFHQ folder. Or you can go to the folder AFHQ/prepare_data and follow the instructions to generate the data.

Training

To train the latent classifier, you can run:

bash scripts/run_clf.sh

Note that each att_name (i.e., breeds) in run_clf.sh corresponds to a separate attribute classifier.

Sampling

To get the conditional sampling and sequential editing results, you can run:

# conditional sampling
bash scripts/run_cond_sample.sh

# sequential editing
bash scripts/run_seq_edit_sample.sh

License

Please check the LICENSE file. This work may be used non-commercially, meaning for research or evaluation purposes only. For business inquiries, please contact [email protected].

Citation

Please cite our paper, if you happen to use this codebase:

@inproceedings{nie2021controllable,
  title={Controllable and compositional generation with latent-space energy-based models},
  author={Nie, Weili and Vahdat, Arash and Anandkumar, Anima},
  booktitle={Neural Information Processing Systems (NeurIPS)},
  year={2021}
}
Owner
NVIDIA Research Projects
NVIDIA Research Projects
This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Hierarchical Motion Understanding via Motion Programs (CVPR 2021) This repository contains the official implementation of: Hierarchical Motion Underst

Sumith Kulal 40 Dec 05, 2022
SeqAttack: a framework for adversarial attacks on token classification models

A framework for adversarial attacks against token classification models

Walter 23 Nov 25, 2022
This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

Popstar Idhant 3 Feb 25, 2022
Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

47 Jun 30, 2022
A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning

LABES This is the code for EMNLP 2020 paper "A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised L

17 Sep 28, 2022
This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detection', CVPR 2019.

Code-and-Dataset-for-CapSal This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detec

lu zhang 48 Aug 19, 2022
ByteTrack: Multi-Object Tracking by Associating Every Detection Box

ByteTrack ByteTrack is a simple, fast and strong multi-object tracker. ByteTrack: Multi-Object Tracking by Associating Every Detection Box Yifu Zhang,

Yifu Zhang 2.9k Jan 04, 2023
Using modified BiSeNet for face parsing in PyTorch

face-parsing.PyTorch Contents Training Demo References Training Prepare training data: -- download CelebAMask-HQ dataset -- change file path in the pr

zll 1.6k Jan 08, 2023
This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods

pyLiDAR-SLAM This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods, which can easily be evaluated

Kitware, Inc. 208 Dec 16, 2022
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
Python Classes: Medical Insurance Project using Object Oriented Programming Concepts

Medical-Insurance-Project-OOP Python Classes: Medical Insurance Project using Object Oriented Programming Concepts Classes are an incredibly useful pr

Hugo B. 0 Feb 04, 2022
Self-Supervised Learning

Self-Supervised Learning Features self_supervised offers features like modular framework support for multi-gpu training using PyTorch Lightning easy t

Robin 1 Dec 14, 2021
The implementation for the SportsCap (IJCV 2021)

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos ProjectPage | Paper | Video | Dataset (Part01

Chen Xin 79 Dec 16, 2022
Processed, version controlled history of Minecraft's generated data and assets

mcmeta Processed, version controlled history of Minecraft's generated data and assets Repository structure Each of the following branches has a commit

Misode 75 Dec 28, 2022
Code, Models and Datasets for OpenViDial Dataset

OpenViDial This repo contains downloading instructions for the OpenViDial dataset in 《OpenViDial: A Large-Scale, Open-Domain Dialogue Dataset with Vis

119 Dec 08, 2022
Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021)

Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021) Introduction This is the official repository for the PyTorch implementation

165 Dec 07, 2022
HGCN: Harmonic Gated Compensation Network For Speech Enhancement

HGCN The official repo of "HGCN: Harmonic Gated Compensation Network For Speech Enhancement", which was accepted at ICASSP2022. How to use step1: Calc

ScorpioMiku 33 Nov 14, 2022
Smart edu-autobooking - Johnson @ DMI-UNICT study room self-booking system

smart_edu-autobooking Sistema di autoprenotazione per l'aula studio [email protected]

Davide Carnemolla 17 Jun 20, 2022
Dynamic wallpaper generator.

Wiki • About • Installation About This project is a dynamic wallpaper changer. It waits untill you turn on the music, downloads album cover if it's po

3 Sep 18, 2021