ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

Overview

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rendering model based on the transformer architecture. The model is capable of both novel view synthesis and camera pose estimation. It is evaluated on previously unseen 3D scenes.

Paper    Web    Demo


Open In Colab Python Versions

Getting started

Start by creating a python 3.8 venv. From the activated environment, you can run the following command in the directory containing setup.py:

pip install -e .

Getting datasets

In this section, we describe how you can prepare the data for training. We assume that you have your environment ready and you want to store the dataset into {output path} directory.

Shepard-Metzler-Parts-7

Please, first visit https://github.com/deepmind/gqn-datasets.

viewformer-cli dataset generate \
    --loader sm7 \
    --image-size 128 \
    --output {output path}/sm7 \
    --max-sequences-per-shard 2000 \
    --split train

viewformer-cli dataset generate \
    --loader sm7 \
    --image-size 128 \
    --output {output path}/sm7 \
    --max-sequences-per-shard 2000 \
    --split test

InteriorNet

Download the dataset into the directory {source} by following the instruction here: https://interiornet.org/. Then, proceed as follows:

viewformer-cli dataset generate \
    --loader interiornet \
    --path {source} \
    --image-size 128  \
    --output {output path}/interiornet \
    --max-sequences-per-shard 50 \
    --shuffle \
    --split train

viewformer-cli dataset generate \
    --loader interiornet \
    --path {source} \
    --image-size 128  \
    --output {output path}/interiornet \
    --max-sequences-per-shard 50 \
    --shuffle \
    --split test

Common Objects in 3D

Download the dataset into the directory {source} by following the instruction here: https://ai.facebook.com/datasets/CO3D-dataset.

Install the following dependencies: plyfile>=0.7.4 pytorch3d. Then, generate the dataset for 10 categories as follows:

viewformer-cli dataset generate \
    --loader co3d \
    --path {source} \
    --image-size 128  \
    --output {output path}/co3d \
    --max-images-per-shard 6000 \
    --shuffle \
    --categories "plant,teddybear,suitcase,bench,ball,cake,vase,hydrant,apple,donut" \
    --split train

viewformer-cli dataset generate \
    --loader co3d \
    --path {source} \
    --image-size 128  \
    --output {output path}/co3d \
    --max-images-per-shard 6000 \
    --shuffle \
    --categories "plant,teddybear,suitcase,bench,ball,cake,vase,hydrant,apple,donut" \
    --split val

Alternatively, generate the full dataset as follows:

viewformer-cli dataset generate \
    --loader co3d \
    --path {source} \
    --image-size 128  \
    --output {output path}/co3d \
    --max-images-per-shard 6000 \
    --shuffle \
    --split train

viewformer-cli dataset generate \
    --loader co3d \
    --path {source} \
    --image-size 128  \
    --output {output path}/co3d \
    --max-images-per-shard 6000 \
    --shuffle \
    --split val

ShapeNet cars and chairs dataset

Download and extract the SRN datasets into the directory {source}. The files can be found here: https://drive.google.com/drive/folders/1OkYgeRcIcLOFu1ft5mRODWNQaPJ0ps90.

Then, generate the dataset as follows:

viewformer-cli dataset generate \
    --loader shapenet \
    --path {source} \
    --image-size 128  \
    --output {output path}/shapenet-{category}/shapenet \
    --categories {category} \
    --max-sequences-per-shard 50 \
    --shuffle \
    --split train

viewformer-cli dataset generate \
    --loader shapenet \
    --path {source} \
    --image-size 128  \
    --output {output path}/shapenet-{category}/shapenet \
    --categories {category} \
    --max-sequences-per-shard 50 \
    --shuffle \
    --split test

where {category} is either cars or chairs.

Faster preprocessing

In order to make the preprocessing faster, you can add --shards {process id}/{num processes} to the command and run multiple instances of the command in multiple processes.

Training the codebook model

The codebook model training uses the PyTorch framework, but the resulting model can be loaded by both TensorFlow and PyTorch. The training code was also prepared for TensorFlow framework, but in order to get the same results as published in the paper, PyTorch code should be used. To train the codebook model on 8 GPUs, run the following code:

viewformer-cli train codebook \
    --job-dir . \
    --dataset "{dataset path}" \
    --num-gpus 8 \
    --batch-size 352 \
    --n-embed 1024 \
    --learning-rate 1.584e-3 \
    --total-steps 200000

Replace {dataset path} by the real dataset path. Note that you can use more than one dataset. In that case, the dataset paths should be separated by a comma. Also, if the size of dataset is not large enough to support sharding, you can reduce the number of data loading workers by using --num-val-workers and --num-workers arguments. The argument --job-dir specifies the path where the resulting model and logs will be stored. You can also use the --wandb flag, that enables logging to wandb.

Finetuning the codebook model

If you want to finetune an existing codebook model, add --resume-from-checkpoint "{checkpoint path}" to the command and increase the number of total steps.

Transforming the dataset into the code representation

Before the transformer model can be trained, the dataset has to be transformed into the code representation. This can be achieved by running the following command (on a single GPU):

viewformer-cli generate-codes \
    --model "{codebook model checkpoint}" \
    --dataset "{dataset path}" \
    --output "{code dataset path}" \
    --batch-size 64 

We assume that the codebook model checkpoint path (ending with .ckpt) is {codebook model checkpoint} and the original dataset is stored in {dataset path}. The resulting dataset will be stored in {code dataset path}.

Training the transformer model

To train the models with the same hyper-parameters as in the paper, run the commands from the following sections based on the target dataset. We assume that the codebook model checkpoint path (ending with .ckpt) is {codebook model checkpoint} and the associated code dataset is located in {code dataset path}. All commands use 8 GPUs (in our case 8 NVIDIA A100 GPUs).

InteriorNet training

viewformer-cli train transformer \
    --dataset "{code dataset path}" \
    --codebook-model "{codebook model checkpoint}" \
    --sequence-size 20 \
    --n-loss-skip 4 \
    --batch-size 40 \
    --fp16 \
    --total-steps 200000 \
    --localization-weight 5. \
    --learning-rate 8e-5 \
    --weight-decay 0.01 \
    --job-dir . \
    --pose-multiplier 1.

For the variant without localization, use --localization-weight 0. Similarly, for the variant without novel view synthesis, use --image-generation-weight 0.

CO3D finetuning

In order to finetune the model for 10 categories, use the following command:

viewformer-cli train finetune-transformer \
    --dataset "{code dataset path}" \
    --codebook-model "{codebook model checkpoint}" \
    --sequence-size 10 \
    --n-loss-skip 1 \
    --batch-size 80 \
    --fp16 \
    --localization-weight 5 \
    --learning-rate 1e-4 \
    --total-steps 40000 \
    --epochs 40 \
    --weight-decay 0.05 \
    --job-dir . \
    --pose-multiplier 0.05 \
    --checkpoint "{interiornet transformer model checkpoint}"

Here {interiornet transformer model checkpoint} is the path to the InteriorNet checkpoint (usually ending with weights.model.099-last). For the variant without localization, use --localization-weight 0.

For all categories and including localization:

viewformer-cli train finetune-transformer \
    --dataset "{code dataset path}" \
    --codebook-model "{codebook model checkpoint}" \
    --sequence-size 10 \
    --n-loss-skip 1 \
    --batch-size 40 \
    --localization-weight 5 \
    --gradient-clip-val 1. \
    --learning-rate 1e-4 \
    --total-steps 100000 \
    --epochs 100 \
    --weight-decay 0.05 \
    --job-dir . \
    --pose-multiplier 0.05 \
    --checkpoint "{interiornet transformer model checkpoint}"

Here {interiornet transformer model checkpoint} is the path to the InteriorNet checkpoint (usually ending with weights.model.099-last).

For all categories without localization:

viewformer-cli train finetune-transformer \
    --dataset "{code dataset path}" \
    --codebook-model "{codebook model checkpoint}" \
    --sequence-size 10 \
    --n-loss-skip 1 \
    --batch-size 40 \
    --localization-weight 5 \
    --learning-rate 1e-4 \
    --total-steps 100000 \
    --epochs 100 \
    --weight-decay 0.05 \
    --job-dir . \
    --pose-multiplier 0.05 \
    --checkpoint "{interiornet transformer model checkpoint}"

Here {interiornet transformer model checkpoint} is the path to the InteriorNet checkpoint (usually ending with weights.model.099-last).

7-Scenes finetuning

viewformer-cli train finetune-transformer \
    --dataset "{code dataset path}" \
    --codebook-model "{codebook model checkpoint}" \
    --localization-weight 5 \
    --pose-multiplier 5. \
    --batch-size 40 \
    --fp16 \
    --learning-rate 1e-5 \
    --job-dir .  \
    --total-steps 10000 \
    --epochs 10 \
    --checkpoint "{interiornet transformer model checkpoint}"

Here {interiornet transformer model checkpoint} is the path to the InteriorNet checkpoint (usually ending with weights.model.099-last).

ShapeNet finetuning

viewformer-cli train finetune-transformer \
    --dataset "{cars code dataset path},{chairs code dataset path}" \
    --codebook-model "{codebook model checkpoint}" \
    --localization-weight 1 \
    --pose-multiplier 1 \
    --n-loss-skip 1 \
    --sequence-size 4 \
    --batch-size 64 \
    --learning-rate 1e-4 \
    --gradient-clip-val 1 \
    --job-dir .  \
    --total-steps 100000 \
    --epochs 100 \
    --weight-decay 0.05 \
    --checkpoint "{interiornet transformer model checkpoint}"

Here {interiornet transformer model checkpoint} is the path to the InteriorNet checkpoint (usually ending with weights.model.099-last).

SM7 training

viewformer-cli train transformer \
    --dataset "{code dataset path}" \
    --codebook-model "{codebook model checkpoint}" \
    --sequence-size 6 \
    --n-loss-skip 1 \
    --batch-size 128 \
    --fp16 \
    --total-steps 120000 \
    --localization-weight "cosine(0,1,120000)" \
    --learning-rate 1e-4 \
    --weight-decay 0.01 \
    --job-dir . \
    --pose-multiplier 0.2

You can safely replace the cosine schedule for localization weight with a constant term.

Evaluation

Codebook evaluation

In order to evaluate the codebook model, run the following:

viewformer-cli evaluate codebook \
    --codebook-model "{codebook model checkpoint}" \
    --loader-path "{dataset path}" \
    --loader dataset \
    --loader-split test \
    --batch-size 64 \
    --image-size 128 \
    --num-store-images 0 \
    --num-eval-images 1000 \
    --job-dir . 

Note that --image-size argument controls the image size used for computing the metrics. You can change it to a different value.

General transformer evaluation

In order to evaluate the transformer model, run the following:

viewformer-cli evaluate transformer \
    --codebook-model "{codebook model checkpoint}" \
    --transformer-model "{transformer model checkpoint}" \
    --loader-path "{dataset path}" \
    --loader dataset \
    --loader-split test \
    --batch-size 1 \
    --image-size 128 \
    --job-dir . \
    --num-eval-sequences 1000

Optionally, you can use --sequence-size to control the context size used for evaluation. Note that --image-size argument controls the image size used for computing the metrics. You can change it to a different value.

Transformer evaluation with different context sizes

In order to evaluate the transformer model with multiple context sizes, run the following:

viewformer-cli evaluate transformer-multictx \
    --codebook-model "{codebook model checkpoint}" \
    --transformer-model "{transformer model checkpoint}" \
    --loader-path "{dataset path}" \
    --loader dataset \
    --loader-split test \
    --batch-size 1 \
    --image-size 128 \
    --job-dir . \
    --num-eval-sequences 1000

Note that --image-size argument controls the image size used for computing the metrics. You can change it to a different value.

CO3D evaluation

In order to evaluate the transformer model on the CO3D dataset, run the following:

viewformer-cli evaluate \
    --codebook-model "{codebook model checkpoint}" \
    --transformer-model "{transformer model checkpoint}" \
    --path {original CO3D root}
    --job-dir . 

7-Scenes evaluation

In order to evaluate the transformer model on the 7-Scenes dataset, run the following:

viewformer-cli evaluate 7scenes \
    --codebook-model "{codebook model checkpoint}" \
    --transformer-model "{transformer model checkpoint}" \
    --path {original 7-Scenes root}
    --batch-size 1
    --job-dir .
    --num-store-images 0
    --top-n-matched-images 10
    --image-match-map {path to top10 matched images}

You can change --top-n-matched-images to 0 if you don't want to use top 10 closest images in the context. {path to top10 matched images} as a path to the file containing the map between most similar images from the test and the train sets. Each line is in the format {relative test image path} {relative train image path}.

Thanks

We would like to express our sincere gratitude to the authors of the following repositories, that we used in our code:

Owner
Jonáš Kulhánek
Jonáš Kulhánek
Remote sensing change detection using PaddlePaddle

Change Detection Laboratory Developing and benchmarking deep learning-based remo

Lin Manhui 15 Sep 23, 2022
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs

Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs MATLAB implementation of the paper: P. Mercado, F. Tudisco, and M. Hein,

Pedro Mercado 6 May 26, 2022
Official PyTorch code for CVPR 2020 paper "Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision"

Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision https://arxiv.org/abs/2003.00393 Abstract Active learning (AL) aims to min

Denis 29 Nov 21, 2022
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022
[CoRL 2021] A robotics benchmark for cross-embodiment imitation.

x-magical x-magical is a benchmark extension of MAGICAL specifically geared towards cross-embodiment imitation. The tasks still provide the Demo/Test

Kevin Zakka 36 Nov 26, 2022
This repository implements WGAN_GP.

Image_WGAN_GP This repository implements WGAN_GP. Image_WGAN_GP This repository uses wgan to generate mnist and fashionmnist pictures. Firstly, you ca

Lieon 6 Dec 10, 2021
Yolact-keras实例分割模型在keras当中的实现

Yolact-keras实例分割模型在keras当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料 Reference 性能情况 训练数

Bubbliiiing 11 Dec 26, 2022
「PyTorch Implementation of AnimeGANv2」を用いて、生成した顔画像を元の画像に上書きするデモ

AnimeGANv2-Face-Overlay-Demo PyTorch Implementation of AnimeGANv2を用いて、生成した顔画像を元の画像に上書きするデモです。

KazuhitoTakahashi 21 Oct 18, 2022
Defending against Model Stealing via Verifying Embedded External Features

Defending against Model Stealing Attacks via Verifying Embedded External Features This is the official implementation of our paper Defending against M

20 Dec 30, 2022
PyTorch Implementation of Backbone of PicoDet

PicoDet-Backbone PyTorch Implementation of Backbone of PicoDet Original Implementation is implemented on PaddlePaddle. Example picodet_l_backbone = ES

Yonghye Kwon 7 Jul 12, 2022
Tutorial on scikit-learn and IPython for parallel machine learning

Parallel Machine Learning with scikit-learn and IPython Video recording of this tutorial given at PyCon in 2013. The tutorial material has been rearra

Olivier Grisel 1.6k Dec 26, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
Curated list of awesome GAN applications and demo

gans-awesome-applications Curated list of awesome GAN applications and demonstrations. Note: General GAN papers targeting simple image generation such

Minchul Shin 4.5k Jan 07, 2023
In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021

In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021. Balestriero et

Sean M. Hendryx 1 Jan 27, 2022
DC540 hacking challenge 0x00005a.

dc540-0x00005a DC540 hacking challenge 0x00005a. PROMOTIONAL VIDEO - WATCH NOW HERE ON YOUTUBE CRITICAL PART 5A VIDEO - WATCH NOW HERE ON YOUTUBE Prio

Kevin Thomas 3 May 09, 2022
This repository contains the entire code for our work "Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding"

Two-Timescale-DNN Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding This repository contains the entire code for our work

QiyuHu 3 Mar 07, 2022
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
A script that trains a model to recognize handwritten digits using the MNIST data set.

handwritten-digits-recognition A script that trains a model to recognize handwritten digits using the MNIST data set. Then it loads external files and

Hamza Sayih 1 Oct 30, 2021
DI-HPC is an acceleration operator component for general algorithm modules in reinforcement learning algorithms

DI-HPC: Decision Intelligence - High Performance Computation DI-HPC is an acceleration operator component for general algorithm modules in reinforceme

OpenDILab 185 Dec 29, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

Wenhao Wang 89 Jan 02, 2023