ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

Overview

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rendering model based on the transformer architecture. The model is capable of both novel view synthesis and camera pose estimation. It is evaluated on previously unseen 3D scenes.

Paper    Web    Demo


Open In Colab Python Versions

Getting started

Start by creating a python 3.8 venv. From the activated environment, you can run the following command in the directory containing setup.py:

pip install -e .

Getting datasets

In this section, we describe how you can prepare the data for training. We assume that you have your environment ready and you want to store the dataset into {output path} directory.

Shepard-Metzler-Parts-7

Please, first visit https://github.com/deepmind/gqn-datasets.

viewformer-cli dataset generate \
    --loader sm7 \
    --image-size 128 \
    --output {output path}/sm7 \
    --max-sequences-per-shard 2000 \
    --split train

viewformer-cli dataset generate \
    --loader sm7 \
    --image-size 128 \
    --output {output path}/sm7 \
    --max-sequences-per-shard 2000 \
    --split test

InteriorNet

Download the dataset into the directory {source} by following the instruction here: https://interiornet.org/. Then, proceed as follows:

viewformer-cli dataset generate \
    --loader interiornet \
    --path {source} \
    --image-size 128  \
    --output {output path}/interiornet \
    --max-sequences-per-shard 50 \
    --shuffle \
    --split train

viewformer-cli dataset generate \
    --loader interiornet \
    --path {source} \
    --image-size 128  \
    --output {output path}/interiornet \
    --max-sequences-per-shard 50 \
    --shuffle \
    --split test

Common Objects in 3D

Download the dataset into the directory {source} by following the instruction here: https://ai.facebook.com/datasets/CO3D-dataset.

Install the following dependencies: plyfile>=0.7.4 pytorch3d. Then, generate the dataset for 10 categories as follows:

viewformer-cli dataset generate \
    --loader co3d \
    --path {source} \
    --image-size 128  \
    --output {output path}/co3d \
    --max-images-per-shard 6000 \
    --shuffle \
    --categories "plant,teddybear,suitcase,bench,ball,cake,vase,hydrant,apple,donut" \
    --split train

viewformer-cli dataset generate \
    --loader co3d \
    --path {source} \
    --image-size 128  \
    --output {output path}/co3d \
    --max-images-per-shard 6000 \
    --shuffle \
    --categories "plant,teddybear,suitcase,bench,ball,cake,vase,hydrant,apple,donut" \
    --split val

Alternatively, generate the full dataset as follows:

viewformer-cli dataset generate \
    --loader co3d \
    --path {source} \
    --image-size 128  \
    --output {output path}/co3d \
    --max-images-per-shard 6000 \
    --shuffle \
    --split train

viewformer-cli dataset generate \
    --loader co3d \
    --path {source} \
    --image-size 128  \
    --output {output path}/co3d \
    --max-images-per-shard 6000 \
    --shuffle \
    --split val

ShapeNet cars and chairs dataset

Download and extract the SRN datasets into the directory {source}. The files can be found here: https://drive.google.com/drive/folders/1OkYgeRcIcLOFu1ft5mRODWNQaPJ0ps90.

Then, generate the dataset as follows:

viewformer-cli dataset generate \
    --loader shapenet \
    --path {source} \
    --image-size 128  \
    --output {output path}/shapenet-{category}/shapenet \
    --categories {category} \
    --max-sequences-per-shard 50 \
    --shuffle \
    --split train

viewformer-cli dataset generate \
    --loader shapenet \
    --path {source} \
    --image-size 128  \
    --output {output path}/shapenet-{category}/shapenet \
    --categories {category} \
    --max-sequences-per-shard 50 \
    --shuffle \
    --split test

where {category} is either cars or chairs.

Faster preprocessing

In order to make the preprocessing faster, you can add --shards {process id}/{num processes} to the command and run multiple instances of the command in multiple processes.

Training the codebook model

The codebook model training uses the PyTorch framework, but the resulting model can be loaded by both TensorFlow and PyTorch. The training code was also prepared for TensorFlow framework, but in order to get the same results as published in the paper, PyTorch code should be used. To train the codebook model on 8 GPUs, run the following code:

viewformer-cli train codebook \
    --job-dir . \
    --dataset "{dataset path}" \
    --num-gpus 8 \
    --batch-size 352 \
    --n-embed 1024 \
    --learning-rate 1.584e-3 \
    --total-steps 200000

Replace {dataset path} by the real dataset path. Note that you can use more than one dataset. In that case, the dataset paths should be separated by a comma. Also, if the size of dataset is not large enough to support sharding, you can reduce the number of data loading workers by using --num-val-workers and --num-workers arguments. The argument --job-dir specifies the path where the resulting model and logs will be stored. You can also use the --wandb flag, that enables logging to wandb.

Finetuning the codebook model

If you want to finetune an existing codebook model, add --resume-from-checkpoint "{checkpoint path}" to the command and increase the number of total steps.

Transforming the dataset into the code representation

Before the transformer model can be trained, the dataset has to be transformed into the code representation. This can be achieved by running the following command (on a single GPU):

viewformer-cli generate-codes \
    --model "{codebook model checkpoint}" \
    --dataset "{dataset path}" \
    --output "{code dataset path}" \
    --batch-size 64 

We assume that the codebook model checkpoint path (ending with .ckpt) is {codebook model checkpoint} and the original dataset is stored in {dataset path}. The resulting dataset will be stored in {code dataset path}.

Training the transformer model

To train the models with the same hyper-parameters as in the paper, run the commands from the following sections based on the target dataset. We assume that the codebook model checkpoint path (ending with .ckpt) is {codebook model checkpoint} and the associated code dataset is located in {code dataset path}. All commands use 8 GPUs (in our case 8 NVIDIA A100 GPUs).

InteriorNet training

viewformer-cli train transformer \
    --dataset "{code dataset path}" \
    --codebook-model "{codebook model checkpoint}" \
    --sequence-size 20 \
    --n-loss-skip 4 \
    --batch-size 40 \
    --fp16 \
    --total-steps 200000 \
    --localization-weight 5. \
    --learning-rate 8e-5 \
    --weight-decay 0.01 \
    --job-dir . \
    --pose-multiplier 1.

For the variant without localization, use --localization-weight 0. Similarly, for the variant without novel view synthesis, use --image-generation-weight 0.

CO3D finetuning

In order to finetune the model for 10 categories, use the following command:

viewformer-cli train finetune-transformer \
    --dataset "{code dataset path}" \
    --codebook-model "{codebook model checkpoint}" \
    --sequence-size 10 \
    --n-loss-skip 1 \
    --batch-size 80 \
    --fp16 \
    --localization-weight 5 \
    --learning-rate 1e-4 \
    --total-steps 40000 \
    --epochs 40 \
    --weight-decay 0.05 \
    --job-dir . \
    --pose-multiplier 0.05 \
    --checkpoint "{interiornet transformer model checkpoint}"

Here {interiornet transformer model checkpoint} is the path to the InteriorNet checkpoint (usually ending with weights.model.099-last). For the variant without localization, use --localization-weight 0.

For all categories and including localization:

viewformer-cli train finetune-transformer \
    --dataset "{code dataset path}" \
    --codebook-model "{codebook model checkpoint}" \
    --sequence-size 10 \
    --n-loss-skip 1 \
    --batch-size 40 \
    --localization-weight 5 \
    --gradient-clip-val 1. \
    --learning-rate 1e-4 \
    --total-steps 100000 \
    --epochs 100 \
    --weight-decay 0.05 \
    --job-dir . \
    --pose-multiplier 0.05 \
    --checkpoint "{interiornet transformer model checkpoint}"

Here {interiornet transformer model checkpoint} is the path to the InteriorNet checkpoint (usually ending with weights.model.099-last).

For all categories without localization:

viewformer-cli train finetune-transformer \
    --dataset "{code dataset path}" \
    --codebook-model "{codebook model checkpoint}" \
    --sequence-size 10 \
    --n-loss-skip 1 \
    --batch-size 40 \
    --localization-weight 5 \
    --learning-rate 1e-4 \
    --total-steps 100000 \
    --epochs 100 \
    --weight-decay 0.05 \
    --job-dir . \
    --pose-multiplier 0.05 \
    --checkpoint "{interiornet transformer model checkpoint}"

Here {interiornet transformer model checkpoint} is the path to the InteriorNet checkpoint (usually ending with weights.model.099-last).

7-Scenes finetuning

viewformer-cli train finetune-transformer \
    --dataset "{code dataset path}" \
    --codebook-model "{codebook model checkpoint}" \
    --localization-weight 5 \
    --pose-multiplier 5. \
    --batch-size 40 \
    --fp16 \
    --learning-rate 1e-5 \
    --job-dir .  \
    --total-steps 10000 \
    --epochs 10 \
    --checkpoint "{interiornet transformer model checkpoint}"

Here {interiornet transformer model checkpoint} is the path to the InteriorNet checkpoint (usually ending with weights.model.099-last).

ShapeNet finetuning

viewformer-cli train finetune-transformer \
    --dataset "{cars code dataset path},{chairs code dataset path}" \
    --codebook-model "{codebook model checkpoint}" \
    --localization-weight 1 \
    --pose-multiplier 1 \
    --n-loss-skip 1 \
    --sequence-size 4 \
    --batch-size 64 \
    --learning-rate 1e-4 \
    --gradient-clip-val 1 \
    --job-dir .  \
    --total-steps 100000 \
    --epochs 100 \
    --weight-decay 0.05 \
    --checkpoint "{interiornet transformer model checkpoint}"

Here {interiornet transformer model checkpoint} is the path to the InteriorNet checkpoint (usually ending with weights.model.099-last).

SM7 training

viewformer-cli train transformer \
    --dataset "{code dataset path}" \
    --codebook-model "{codebook model checkpoint}" \
    --sequence-size 6 \
    --n-loss-skip 1 \
    --batch-size 128 \
    --fp16 \
    --total-steps 120000 \
    --localization-weight "cosine(0,1,120000)" \
    --learning-rate 1e-4 \
    --weight-decay 0.01 \
    --job-dir . \
    --pose-multiplier 0.2

You can safely replace the cosine schedule for localization weight with a constant term.

Evaluation

Codebook evaluation

In order to evaluate the codebook model, run the following:

viewformer-cli evaluate codebook \
    --codebook-model "{codebook model checkpoint}" \
    --loader-path "{dataset path}" \
    --loader dataset \
    --loader-split test \
    --batch-size 64 \
    --image-size 128 \
    --num-store-images 0 \
    --num-eval-images 1000 \
    --job-dir . 

Note that --image-size argument controls the image size used for computing the metrics. You can change it to a different value.

General transformer evaluation

In order to evaluate the transformer model, run the following:

viewformer-cli evaluate transformer \
    --codebook-model "{codebook model checkpoint}" \
    --transformer-model "{transformer model checkpoint}" \
    --loader-path "{dataset path}" \
    --loader dataset \
    --loader-split test \
    --batch-size 1 \
    --image-size 128 \
    --job-dir . \
    --num-eval-sequences 1000

Optionally, you can use --sequence-size to control the context size used for evaluation. Note that --image-size argument controls the image size used for computing the metrics. You can change it to a different value.

Transformer evaluation with different context sizes

In order to evaluate the transformer model with multiple context sizes, run the following:

viewformer-cli evaluate transformer-multictx \
    --codebook-model "{codebook model checkpoint}" \
    --transformer-model "{transformer model checkpoint}" \
    --loader-path "{dataset path}" \
    --loader dataset \
    --loader-split test \
    --batch-size 1 \
    --image-size 128 \
    --job-dir . \
    --num-eval-sequences 1000

Note that --image-size argument controls the image size used for computing the metrics. You can change it to a different value.

CO3D evaluation

In order to evaluate the transformer model on the CO3D dataset, run the following:

viewformer-cli evaluate \
    --codebook-model "{codebook model checkpoint}" \
    --transformer-model "{transformer model checkpoint}" \
    --path {original CO3D root}
    --job-dir . 

7-Scenes evaluation

In order to evaluate the transformer model on the 7-Scenes dataset, run the following:

viewformer-cli evaluate 7scenes \
    --codebook-model "{codebook model checkpoint}" \
    --transformer-model "{transformer model checkpoint}" \
    --path {original 7-Scenes root}
    --batch-size 1
    --job-dir .
    --num-store-images 0
    --top-n-matched-images 10
    --image-match-map {path to top10 matched images}

You can change --top-n-matched-images to 0 if you don't want to use top 10 closest images in the context. {path to top10 matched images} as a path to the file containing the map between most similar images from the test and the train sets. Each line is in the format {relative test image path} {relative train image path}.

Thanks

We would like to express our sincere gratitude to the authors of the following repositories, that we used in our code:

Owner
Jonáš Kulhánek
Jonáš Kulhánek
An expansion for RDKit to read all types of files in one line

RDMolReader An expansion for RDKit to read all types of files in one line How to use? Add this single .py file to your project and import MolFromFile(

Ali Khodabandehlou 1 Dec 18, 2021
Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model

Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model SWAGAN: A Style-based Wavelet-driven Generative Model Rinon Gal, Dana

55 Dec 06, 2022
ProMP: Proximal Meta-Policy Search

ProMP: Proximal Meta-Policy Search Implementations corresponding to ProMP (Rothfuss et al., 2018). Overall this repository consists of two branches: m

Jonas Rothfuss 212 Dec 20, 2022
[ICCV2021] 3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds

3DVG-Transformer This repository is for the ICCV 2021 paper "3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds" Our method "3DV

22 Dec 11, 2022
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022
DeepFill v1/v2 with Contextual Attention and Gated Convolution, CVPR 2018, and ICCV 2019 Oral

Generative Image Inpainting An open source framework for generative image inpainting task, with the support of Contextual Attention (CVPR 2018) and Ga

2.9k Dec 16, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
RobustVideoMatting and background composing in one model by using onnxruntime.

RVM_onnx_compose RobustVideoMatting and background composing in one model by using onnxruntime. Usage pip install -r requirements.txt python infer_cam

Quantum Liu 4 Apr 07, 2022
Ankou: Guiding Grey-box Fuzzing towards Combinatorial Difference

Ankou Ankou is a source-based grey-box fuzzer. It intends to use a more rich fitness function by going beyond simple branch coverage and considering t

SoftSec Lab 54 Dec 24, 2022
Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"

Self-Training for Neural Sequence Generation This repo includes instructions for running noisy self-training algorithms from the following paper: Revi

Junxian He 45 Dec 31, 2022
AlphaNet Improved Training of Supernet with Alpha-Divergence

AlphaNet: Improved Training of Supernet with Alpha-Divergence This repository contains our PyTorch training code, evaluation code and pretrained model

Facebook Research 87 Oct 10, 2022
TensorFlow implementation of Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction)

Barlow-Twins-TF This repository implements Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction) in TensorFlow and demonstrat

Sayak Paul 36 Sep 14, 2022
Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

SSL_OSC Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

zaixizhang 2 May 14, 2022
Official implementation of "Learning Proposals for Practical Energy-Based Regression", 2021.

ebms_proposals Official implementation (PyTorch) of the paper: Learning Proposals for Practical Energy-Based Regression, 2021 [arXiv] [project]. Fredr

Fredrik Gustafsson 10 Oct 22, 2022
Occlusion robust 3D face reconstruction model in CFR-GAN (WACV 2022)

Occlusion Robust 3D face Reconstruction Yeong-Joon Ju, Gun-Hee Lee, Jung-Ho Hong, and Seong-Whan Lee Code for Occlusion Robust 3D Face Reconstruction

Yeongjoon 31 Dec 19, 2022
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

xxxnell 656 Dec 30, 2022
Implementation of Memformer, a Memory-augmented Transformer, in Pytorch

Memformer - Pytorch Implementation of Memformer, a Memory-augmented Transformer, in Pytorch. It includes memory slots, which are updated with attentio

Phil Wang 60 Nov 06, 2022
Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning

Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning Code for the paper Harmonious Textual Layout Generation over Nat

7 Aug 09, 2022
Adaptive Graph Convolution for Point Cloud Analysis

Adaptive Graph Convolution for Point Cloud Analysis This repository contains the implementation of AdaptConv for point cloud analysis. Adaptive Graph

64 Dec 21, 2022
Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations This is the repository for the paper Consumer Fairness in Recomm

7 Nov 30, 2022