Defending against Model Stealing via Verifying Embedded External Features

Overview

Defending against Model Stealing Attacks via Verifying Embedded External Features

This is the official implementation of our paper Defending against Model Stealing Attacks via Verifying Embedded External Features, accepted by the AAAI Conference on Artificial Intelligence (AAAI), 2022. This research project is developed based on Python 3 and Pytorch, created by Yiming Li and Linghui Zhu.

Pipeline

Pipeline

Requirements

To install requirements:

pip install -r requirements.txt

Make sure the directory follows:

stealingverification
├── data
│   ├── cifar10
│   └── ...
├── gradients_set 
│   
├── prob
│   
├── network
│   
├── model
│   ├── victim
│   └── ...
|

Dataset Preparation

Make sure the directory data follows:

data
├── cifar10_seurat_10%
|   ├── train
│   └── test
├── cifar10  
│   ├── train
│   └── test
├── subimage_seurat_10%
│   ├── train
|   ├── val
│   └── test
├── sub-imagenet-20
│   ├── train
|   ├── val
│   └── test

📋 Data Download Link:
data

Model Preparation

Make sure the directory model follows:

model
├── victim
│   ├── vict-wrn28-10.pt
│   └── ...
├── benign
│   ├── benign-wrn28-10.pt
│   └── ...
├── attack
│   ├── atta-label-wrn16-1.pt
│   └── ...
└── clf

📋 Model Download Link:
model

Collecting Gradient Vectors

Collect gradient vectors of victim and benign model with respect to transformed images.

CIFAR-10:

python gradientset.py --model=wrn16-1 --m=./model/victim/vict-wrn16-1.pt --dataset=cifar10 --gpu=0
python gradientset.py --model=wrn28-10 --m=./model/victim/vict-wrn28-10.pt --dataset=cifar10 --gpu=0
python gradientset.py --model=wrn16-1 --m=./model/benign/benign-wrn16-1.pt --dataset=cifar10 --gpu=0
python gradientset.py --model=wrn28-10 --m=./model/benign/benign-wrn28-10.pt --dataset=cifar10 --gpu=0

ImageNet:

python gradientset.py --model=resnet34-imgnet --m=./model/victim/vict-imgnet-resnet34.pt --dataset=imagenet --gpu=0
python gradientset.py --model=resnet18-imgnet --m=./model/victim/vict-imgnet-resnet18.pt --dataset=imagenet --gpu=0
python gradientset.py --model=resnet34-imgnet --m=./model/benign/benign-imgnet-resnet34.pt --dataset=imagenet --gpu=0
python gradientset.py --model=resnet18-imgnet --m=./model/benign/benign-imgnet-resnet18.pt --dataset=imagenet --gpu=0

Training Ownership Meta-Classifier

To train the ownership meta-classifier in the paper, run these commands:

CIFAR-10:

python train_clf.py --type=wrn28-10 --dataset=cifar10 --gpu=0
python train_clf.py --type=wrn16-1 --dataset=cifar10 --gpu=0

ImageNet:

python train_clf.py --type=resnet34-imgnet --dataset=imagenet --gpu=0
python train_clf.py --type=resnet18-imgnet --dataset=imagenet --gpu=0

Ownership Verification

To verify the ownership of the suspicious models, run this command:

CIFAR-10:

python ownership_verification.py --mode=source --dataset=cifar10 --gpu=0 

#mode: ['source','distillation','zero-shot','fine-tune','label-query','logit-query','benign']

ImageNet:

python ownership_verification.py --mode=logit-query --dataset=imagenet --gpu=0 

#mode: ['source','distillation','zero-shot','fine-tune','label-query','logit-query','benign']

An Example of the Result

python ownership_verification.py --mode=fine-tune --dataset=cifar10 --gpu=0 

result:  p-val: 1.9594572166549425e-08 mu: 0.47074130177497864

Reference

If our work or this repo is useful for your research, please cite our paper as follows:

@inproceedings{li2022defending,
  title={Defending against Model Stealing via Verifying Embedded External Features},
  author={Li, Yiming and Zhu, Linghui and Jia, Xiaojun and Jiang, Yong and Xia, Shu-Tao and Cao, Xiaochun},
  booktitle={AAAI},
  year={2022}
}
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 09, 2023
"Learning and Analyzing Generation Order for Undirected Sequence Models" in Findings of EMNLP, 2021

undirected-generation-dev This repo contains the source code of the models described in the following paper "Learning and Analyzing Generation Order f

Yichen Jiang 0 Mar 25, 2022
Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Transferable Semantic Augmentation for Domain Adaptation Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021) Paper

66 Dec 16, 2022
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
A Python package for performing pore network modeling of porous media

Overview of OpenPNM OpenPNM is a comprehensive framework for performing pore network simulations of porous materials. More Information For more detail

PMEAL 336 Dec 30, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Voxelized 3D Feature Aggregation for Multiview Detection [arXiv] Multiview 3D object detection on MultiviewC dataset through VFA. Introduction We prop

Jiahao Ma 20 Dec 21, 2022
OpenLT: An open-source project for long-tail classification

OpenLT: An open-source project for long-tail classification Supported Methods for Long-tailed Recognition: Cross-Entropy Loss Focal Loss (ICCV'17) Cla

Ming Li 37 Sep 15, 2022
TensorFlow 2 AI/ML library wrapper for openFrameworks

ofxTensorFlow2 This is an openFrameworks addon for the TensorFlow 2 ML (Machine Learning) library

Center for Art and Media Karlsruhe 96 Dec 31, 2022
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm

Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This

Phil Tabor 159 Dec 28, 2022
Volumetric parameterization of the placenta to a flattened template

placenta-flattening A MATLAB algorithm for volumetric mesh parameterization. Developed for mapping a placenta segmentation derived from an MRI image t

Mazdak Abulnaga 12 Mar 14, 2022
Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling"

Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling" Pipeline of Tip-Adapter Tip-Adapter can provid

peng gao 187 Dec 28, 2022
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning

Human-Level Control through Deep Reinforcement Learning Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning. This imp

Devsisters Corp. 2.4k Dec 26, 2022
Meandering In Networks of Entities to Reach Verisimilar Answers

MINERVA Meandering In Networks of Entities to Reach Verisimilar Answers Code and models for the paper Go for a Walk and Arrive at the Answer - Reasoni

Shehzaad Dhuliawala 271 Dec 13, 2022
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023
Deeper insights into graph convolutional networks for semi-supervised learning

deeper_insights_into_GCNs Deeper insights into graph convolutional networks for semi-supervised learning References data and utils.py come from Implem

Davidham3 17 Dec 16, 2022
MoveNet Single Pose on OpenVINO

MoveNet Single Pose tracking on OpenVINO Running Google MoveNet Single Pose models on OpenVINO. A convolutional neural network model that runs on RGB

35 Nov 11, 2022
A scikit-learn-compatible module for estimating prediction intervals.

MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals (or prediction sets) using your favourit

588 Jan 04, 2023
DiffStride: Learning strides in convolutional neural networks

DiffStride is a pooling layer with learnable strides. Unlike strided convolutions, average pooling or max-pooling that require cross-validating stride values at each layer, DiffStride can be initiali

Google Research 113 Dec 13, 2022