"Learning and Analyzing Generation Order for Undirected Sequence Models" in Findings of EMNLP, 2021

Overview

undirected-generation-dev

This repo contains the source code of the models described in the following paper

  • "Learning and Analyzing Generation Order for Undirected Sequence Models" in Findings of EMNLP, 2021. (paper).

The basic code structure was adapted from the NYU dl4mt-seqgen. We also use the pybleu from fairseq to calculate BLEU scores during the reinforcement learning.

0. Preparation

0.1 Dependencies

  • PyTorch 1.4.0/1.6.0/1.8.0

0.2 Data

The WMT'14 De-En data and the pretrained De-En MLM model are provided in the dl4mt-seqgen.

  • Download WMT'14 De-En valid/test data.
  • Then organize the data in data/ and make sure it follows such a structure:
------ data
--------- de-en
------------ train.de-en.de.pth
------------ train.de-en.en.pth
------------ valid.de-en.de.pth
------------ valid.de-en.en.pth
------------ test.de-en.de.pth
------------ test.de-en.en.pth
  • Download pretrained models.
  • Then organize the pretrained masked language models in models/ make sure it follows such a structure:
------ models
--------- best-valid_en-de_mt_bleu.pth
--------- best-valid_de-en_mt_bleu.pth

2. Training the order policy network with reinforcement learning

Train a policy network to predict the generation order for a pretrained De-En masked language model:

./train_scripts/train_order_rl_deen.sh
  • By defaults, the model checkpoints will be saved in models/learned_order_deen_uniform_4gpu/00_maxlen30_minlen5_bsz32.
  • By using this script, we are only training the model on De-En sentence pairs where both the German and English sentences with a maximum length of 30 and a minimum length of 5. You can change the training parameters max_len and min_len to change the length limits.

3. Decode the undirected generation model with learned orders

  • Set the MODEL_CKPT parameter to the corresponding path found under models/00_maxlen30_minlen5_bsz32. For example:
export MODEL_CKPT=wj8oc8kab4/checkpoint_epoch30+iter96875.pth
  • Evaluate the model on the SCAN MCD1 splits by running:
export MODEL_CKPT=...
./eval_scripts/generate-order-deen.sh $MODEL_CKPT

4. Decode the undirected generation model with heuristic orders

  • Left2Right
./eval_scripts/generate-deen.sh left_right_greedy_1iter
  • Least2Most
./eval_scripts/generate-deen.sh least_most_greedy_1iter
  • EasyFirst
./eval_scripts/generate-deen.sh easy_first_greedy_1iter
  • Uniform
./eval_scripts/generate-deen.sh uniform_greedy_1iter

Citation

@inproceedings{jiang-bansal-2021-learning-analyzing,
    title = "Learning and Analyzing Generation Order for Undirected Sequence Models",
    author = "Jiang, Yichen  and
      Bansal, Mohit",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
    month = nov,
    year = "2021",
    address = "Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.findings-emnlp.298",
    pages = "3513--3523",
}
Owner
Yichen Jiang
Yichen Jiang
DeepRec is a recommendation engine based on TensorFlow.

DeepRec Introduction DeepRec is a recommendation engine based on TensorFlow 1.15, Intel-TensorFlow and NVIDIA-TensorFlow. Background Sparse model is a

Alibaba 676 Jan 03, 2023
CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation

CSKG: The CommonSense Knowledge Graph CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation: AT

USC ISI I2 85 Dec 12, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 01, 2022
Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences 1. Introduction This project is for paper Model-free Vehicle Tracking and St

TuSimple 92 Jan 03, 2023
The coda and data for "Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach" (ACL '21)

We propose a hierarchical core-fringe learning framework to measure fine-grained domain relevance of terms – the degree that a term is relevant to a broad (e.g., computer science) or narrow (e.g., de

Jie Huang 14 Oct 21, 2022
Implements Gradient Centralization and allows it to use as a Python package in TensorFlow

Gradient Centralization TensorFlow This Python package implements Gradient Centralization in TensorFlow, a simple and effective optimization technique

Rishit Dagli 101 Nov 01, 2022
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Squidward 62 Nov 28, 2022
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intel ISL (Intel Intelligent Systems Lab) 1.3k Dec 28, 2022
Tensorflow2.0 🍎🍊 is delicious, just eat it! 😋😋

How to eat TensorFlow2 in 30 days ? 🔥 🔥 Click here for Chinese Version(中文版) 《10天吃掉那只pyspark》 🚀 github项目地址: https://github.com/lyhue1991/eat_pyspark

lyhue1991 9.7k Jan 01, 2023
New AidForBlind - Various Libraries used like OpenCV and other mentioned in Requirements.txt

AidForBlind Recommended PyCharm IDE Various Libraries used like OpenCV and other

Aalhad Chandewar 1 Jan 13, 2022
PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds

PIXOR: Real-time 3D Object Detection from Point Clouds This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the

Philip Huang 270 Dec 14, 2022
Spatial color quantization in Rust

rscolorq Rust port of Derrick Coetzee's scolorq, based on the 1998 paper "On spatial quantization of color images" by Jan Puzicha, Markus Held, Jens K

Collyn O'Kane 37 Dec 22, 2022
This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation

TransFuse This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation Requirements Pytorch=1.6.0, 1.9.0 (=1.

Rayicer 93 Dec 19, 2022
One-line your code easily but still with the fun of doing so!

One-liner-iser One-line your code easily but still with the fun of doing so! Have YOU ever wanted to write one-line Python code, but don't have the sa

5 May 04, 2022
deep-prae

Deep Probabilistic Accelerated Evaluation (Deep-PrAE) Our work presents an efficient rare event simulation methodology for black box autonomy using Im

Safe AI Lab 4 Apr 17, 2021
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Daft-Exprt - PyTorch Implementation PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis The

Keon Lee 47 Dec 18, 2022
A Python library created to assist programmers with complex mathematical functions

libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
Liver segmentation using MONAI and pytorch

Machine Learning use case in the field of Healthcare. In this project MONAI and pytorch frameworks are used for 3D Liver segmentation.

Abhishek Gajbhiye 2 May 30, 2022