OpenLT: An open-source project for long-tail classification

Related tags

Deep LearningOpenLT
Overview

OpenLT: An open-source project for long-tail classification

Supported Methods for Long-tailed Recognition:

Reproduce Results

Here we simply show part of results to prove that our implementation is reasonable.

ImageNet-LT

Method Backbone Reported Result Our Implementation
CE ResNet-10 34.8 35.3
Decouple-cRT ResNet-10 41.8 41.8
Decouple-LWS ResNet-10 41.4 41.6
BalanceSoftmax ResNet-10 41.8 41.4
CE ResNet-50 41.6 43.2
LDAM-DRW* ResNet-50 48.8 51.2
Decouple-cRT ResNet-50 47.3 48.7
Decouple-LWS ResNet-50 47.7 49.3

CIFAR100-LT (Imbalance Ratio 100)

${\dagger}$ means the reported results are copied from LADE

Method Datatset Reported Result Our Implementation
CE CIFAR100-LT 39.1 40.3
LDAM-DRW CIFAR100-LT 42.04 42.9
LogitAdjust CIFAR100-LT 43.89 45.3
BalanceSoftmax$^{\dagger}$ CIFAR100-LT 45.1 46.47

Requirement

Packages

  • Python >= 3.7, < 3.9
  • PyTorch >= 1.6
  • tqdm (Used in test.py)
  • tensorboard >= 1.14 (for visualization)
  • pandas
  • numpy

Dataset Preparation

CIFAR code will download data automatically with the dataloader. We use data the same way as classifier-balancing. For ImageNet-LT and iNaturalist, please prepare data in the data directory. ImageNet-LT can be found at this link. iNaturalist data should be the 2018 version from this repo (Note that it requires you to pay to download now). The annotation can be found at here. Please put them in the same location as below:

data
├── cifar-100-python
│   ├── file.txt~
│   ├── meta
│   ├── test
│   └── train
├── cifar-100-python.tar.gz
├── ImageNet_LT
│   ├── ImageNet_LT_open.txt
│   ├── ImageNet_LT_test.txt
│   ├── ImageNet_LT_train.txt
│   ├── ImageNet_LT_val.txt
│   ├── Tiny_ImageNet_LT_train.txt (Optional)
│   ├── Tiny_ImageNet_LT_val.txt (Optional)
│   ├── Tiny_ImageNet_LT_test.txt (Optional)
│   ├── test
│   ├── train
│   └── val
└── iNaturalist18
    ├── iNaturalist18_train.txt
    ├── iNaturalist18_val.txt
    └── train_val2018

Training and Evaluation Instructions

Single Stage Training

python train.py -c path_to_config_file

For example, to train a model with LDAM Loss on CIFAR-100-LT:

python train.py -c configs/CIFAR-100/LDAMLoss.json

Decouple Training (Stage-2)

python train.py -c path_to_config_file -crt path_to_stage_one_checkpoints

For example, to train a model with LWS classifier on ImageNet-LT:

python train.py -c configs/ImageNet-LT/R50_LWS.json -lws path_to_stage_one_checkpoints

Test

To test a checkpoint, please put it with the corresponding config file.

python test.py -r path_to_checkpoint

resume

python train.py -c path_to_config_file -r path_to_resume_checkpoint

Please see the pytorch template that we use for additional more general usages of this project

FP16 Training

If you set fp16 in utils/util.py, it will enable fp16 training. However, this is susceptible to change (and may not work on all settings or models) and please double check if you are using it since we don't plan to focus on this part if you request help. Only some models work (see autograd in the code). We do not plan to provide support on this because it is not within our focus (just for faster training and less memory requirement). In our experiments, the use of FP16 training does not reduce the accuracy of the model, regardless of whether it is a small dataset (CIFAR-LT) or a large dataset(ImageNet_LT, iNaturalist).

Visualization

We use tensorboard as a visualization tool, and provide the accuracy changes of each class and different groups during the training process:

tensorboard --logdir path_to_dir

We also provide the simple code to visualize feature distribution using t-SNE and calibration using the reliability diagrams, please check the parameters in plot_tsne.py and plot_ece.py, and then run:

python plot_tsne.py

or

python plot_ece.py

Pytorch template

This is a project based on this pytorch template. The readme of the template explains its functionality, although we try to list most frequently used ones in this readme.

License

This project is licensed under the MIT License. See LICENSE for more details. The parts described below follow their original license.

Acknowledgements

This project is mainly based on RIDE's code base. In the process of reproducing and organizing the code, it also refers to some other excellent code repositories, such as decouple and LDAM.

Owner
Ming Li
Ming Li
Create and implement a deep learning library from scratch.

In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The Proj

Rishabh Bali 22 Aug 23, 2022
HW3 ― GAN, ACGAN and UDA

HW3 ― GAN, ACGAN and UDA In this assignment, you are given datasets of human face and digit images. You will need to implement the models of both GAN

grassking100 1 Dec 13, 2021
This is a repository of our model for weakly-supervised video dense anticipation.

Introduction This is a repository of our model for weakly-supervised video dense anticipation. More results on GTEA, Epic-Kitchens etc. will come soon

2 Apr 09, 2022
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022
Official implementation of "Open-set Label Noise Can Improve Robustness Against Inherent Label Noise" (NeurIPS 2021)

Open-set Label Noise Can Improve Robustness Against Inherent Label Noise NeurIPS 2021: This repository is the official implementation of ODNL. Require

Hongxin Wei 12 Dec 07, 2022
An Efficient Implementation of Analytic Mesh Algorithm for 3D Iso-surface Extraction from Neural Networks

AnalyticMesh Analytic Marching is an exact meshing solution from neural networks. Compared to standard methods, it completely avoids geometric and top

Karbo 45 Dec 21, 2022
My freqtrade strategies

My freqtrade-strategies Hi there! This is repo for my freqtrade-strategies. My name is Ilya Zelenchuk, I'm a lecturer at the SPbU university (https://

171 Dec 05, 2022
Simple reimplemetation experiments about FcaNet

FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py

76 Feb 04, 2021
Public scripts, services, and configuration for running a smart home K3S network cluster

makerhouse_network Public scripts, services, and configuration for running MakerHouse's home network. This network supports: TODO features here For mo

Scott Martin 1 Jan 15, 2022
Message Passing on Cell Complexes

CW Networks This repository contains the code used for the papers Weisfeiler and Lehman Go Cellular: CW Networks (Under review) and Weisfeiler and Leh

Twitter Research 108 Jan 05, 2023
Public Implementation of ChIRo from "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations"

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations This directory contains the model architectures and experimental

35 Dec 05, 2022
On-device speech-to-index engine powered by deep learning.

On-device speech-to-index engine powered by deep learning.

Picovoice 30 Nov 24, 2022
Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021]

Neural Material Official code repository for the paper: Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021] Henzler, Deschai

Philipp Henzler 80 Dec 20, 2022
A new data augmentation method for extreme lighting conditions.

Random Shadows and Highlights This repo has the source code for the paper: Random Shadows and Highlights: A new data augmentation method for extreme l

Osama Mazhar 35 Nov 26, 2022
PyTorch implementations of the paper: "Learning Independent Instance Maps for Crowd Localization"

IIM - Crowd Localization This repo is the official implementation of paper: Learning Independent Instance Maps for Crowd Localization. The code is dev

tao han 91 Nov 10, 2022
A simple python library for fast image generation of people who do not exist.

Random Face A simple python library for fast image generation of people who do not exist. For more details, please refer to the [paper](https://arxiv.

Sergei Belousov 170 Dec 15, 2022
Genetic Programming in Python, with a scikit-learn inspired API

Welcome to gplearn! gplearn implements Genetic Programming in Python, with a scikit-learn inspired and compatible API. While Genetic Programming (GP)

Trevor Stephens 1.3k Jan 03, 2023
Contains a bunch of different python programm tasks

py_tasks Contains a bunch of different python programm tasks Armstrong.py - calculate Armsrong numbers in range from 0 to n with / without cache and c

Dmitry Chmerenko 1 Dec 17, 2021
Gesture-controlled Video Game. Just swing your finger and play the game without touching your PC

Gesture Controlled Video Game Detailed Blog : https://www.analyticsvidhya.com/blog/2021/06/gesture-controlled-video-game/ Introduction This project is

Devbrat Anuragi 35 Jan 06, 2023
Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling".

PSSL Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling". It consists of the pre-tra

2 Dec 21, 2021