Multiview 3D object detection on MultiviewC dataset through moft3d.

Overview

Voxelized 3D Feature Aggregation for Multiview Detection [arXiv]

Multiview 3D object detection on MultiviewC dataset through VFA.

Introduction

We propose a novel method, VFA, for multiview 3D object detection and MultiviewC, a synthetic dataset, for multi-view detection in occlusion scenarios.

Content

MultiviewC dataset

The MultiviewC dataset mainly contributes to multiview cattle action recognition, 3D objection detection and tracking. We build a novel synthetic dataset MultiviewC through UE4 based on real cattle video dataset which is offered by CISRO.

The MultiviewC dataset is generated on a 37.5 meter by 37.5 meter square field. It contains 7 cameras monitoring cattle activities. The images in MultiviewC are of high resolution, 1280x720 and synthetic animals in our dataset are highly realistic.

alt text

Download MultiviewC

  • download dataset and copy the annotations, images and calibrations folder into this repo.

Build your own version

Please refer to this repo for MultiviewC dataset toolkits.

VFA

This repo is contributed to the code for VFA.

Data Preparation

In this project, we use MultiviewC, MultiviewX and Wildtrack. Download and unzip the dataset in the ~/Data folder. Your ~/Data/ folder should look like this

Data
├── MultiviewC/
│   └── ...
|
├── MultiviewX/
│   └── ...
|
└── Wildtrack/ 
    └── ...

Training and Inference

Training from scratch.

# For MultiviewC
python .\train.py --data MultiviewC

# For MultiviewX
python .\train.py --data MultiviewX

# For Wildtrack
python .\train.py --data Wildtrack

We provide the training documents contains the checkpoints of model, optimizer and scheduler and tensorboard containing the training details. Download the latest training documents to ~/experiments folder from BaiduDrivepwd:6666 or GoogleDrive and unzip them. Your ~/experiments/ folder should look like this

experiments
└── MultiviewC/
    ├── checkpoints
    |   └── ...
    └── evaluation
    |   └── ...
    └── tensorboard
        └── ...

Evaluation

There are two metrics to evaluate the performance of model. MODA, MODP, Precission and Recall are used to evaluate detection performance such as the detection in occlusion scenes. These metrics need to successfully run in matlab environment. Please refer to here for more details. Even though, the python implementation of these metrics mentioned above is also provided, it need to select the distance threshould to detemine to positive samples,which is not objective enough. Thus, it is recommended to select the official implementation of matlab.

When it comes to the AP, AOS, OS metrics, we need to install cuda environment and build the toolkit for 3D rotated IoUs calculation. Please refer to this repo for more details.

Owner
Jiahao Ma
MPhil of Australian National University
Jiahao Ma
Contrastive Loss Gradient Attack (CLGA)

Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu

12 Dec 23, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Arjun Majumdar 44 Dec 14, 2022
The code repository for "PyCIL: A Python Toolbox for Class-Incremental Learning" in PyTorch.

PyCIL: A Python Toolbox for Class-Incremental Learning Introduction • Methods Reproduced • Reproduced Results • How To Use • License • Acknowledgement

Fu-Yun Wang 258 Dec 31, 2022
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity

[ICLR 2022] Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity by Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elen

VITA 18 Dec 31, 2022
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.

faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2

3.2k Dec 30, 2022
Segmentation models with pretrained backbones. Keras and TensorFlow Keras.

Python library with Neural Networks for Image Segmentation based on Keras and TensorFlow. The main features of this library are: High level API (just

Pavel Yakubovskiy 4.2k Jan 09, 2023
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Shengyu Zhao 373 Jan 02, 2023
Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution [arXiv 2021].

Christoph Reich 122 Dec 12, 2022
Dynamic wallpaper generator.

Wiki • About • Installation About This project is a dynamic wallpaper changer. It waits untill you turn on the music, downloads album cover if it's po

3 Sep 18, 2021
StellarGraph - Machine Learning on Graphs

StellarGraph Machine Learning Library StellarGraph is a Python library for machine learning on graphs and networks. Table of Contents Introduction Get

S T E L L A R 2.6k Jan 05, 2023
On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation

On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation On Nonlinear Latent Transformations for GAN-based Image Editi

Valentin Khrulkov 22 Oct 24, 2022
Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

**Codebase and data are uploaded in progress. ** VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly ge

416 Jan 09, 2023
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

15 Nov 30, 2022
This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by Divam Gupta, Wei Pu, Trenton Tabor, Jeff Schneider

SBEVNet: End-to-End Deep Stereo Layout Estimation This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by D

Divam Gupta 19 Dec 17, 2022
A python interface for training Reinforcement Learning bots to battle on pokemon showdown

The pokemon showdown Python environment A Python interface to create battling pokemon agents. poke-env offers an easy-to-use interface for creating ru

Haris Sahovic 184 Dec 30, 2022
PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our paper

Flow Gaussian Mixture Model (FlowGMM) This repository contains a PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our pa

Pavel Izmailov 124 Nov 06, 2022
O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning (CoRL 2021)

O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning Object-object Interaction Affordance Learning. For a given object-object int

Kaichun Mo 26 Nov 04, 2022
This respository includes implementations on Manifoldron: Direct Space Partition via Manifold Discovery

Manifoldron: Direct Space Partition via Manifold Discovery This respository includes implementations on Manifoldron: Direct Space Partition via Manifo

dayang_wang 4 Apr 28, 2022
Tensorflow implementation of "BEGAN: Boundary Equilibrium Generative Adversarial Networks"

BEGAN in Tensorflow Tensorflow implementation of BEGAN: Boundary Equilibrium Generative Adversarial Networks. Requirements Python 2.7 or 3.x Pillow tq

Taehoon Kim 922 Dec 21, 2022