Code for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter"

Related tags

Deep LearningLEBERT
Overview

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter

Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter"

Arxiv link of the paper: https://arxiv.org/abs/2105.07148

Requirement

  • Python 3.7.0
  • Transformer 3.4.0
  • Numpy 1.18.5
  • Packaging 17.1
  • skicit-learn 0.23.2
  • torch 1.16.0+cu92
  • tqdm 4.50.2
  • multiprocess 0.70.10
  • tensorflow 2.3.1
  • tensorboardX 2.1
  • seqeval 1.2.1

Input Format

CoNLL format (prefer BIOES tag scheme), with each character its label for one line. Sentences are splited with a null line.

美   B-LOC  
国   E-LOC  
的   O  
华   B-PER  
莱   I-PER  
士   E-PER  

我   O  
跟   O  
他   O  
谈   O  
笑   O  
风   O  
生   O   

Chinese BERT,Chinese Word Embedding, and Checkpoints

Chinese BERT

Chinese BERT: https://cdn.huggingface.co/bert-base-chinese-pytorch_model.bin

Chinese word embedding:

Word Embedding: https://ai.tencent.com/ailab/nlp/en/data/Tencent_AILab_ChineseEmbedding.tar.gz

Checkpoints and Shells

Directory Structure of data

  • berts
    • bert
      • config.json
      • vocab.txt
      • pytorch_model.bin
  • dataset
    • NER
      • weibo
      • note4
      • msra
      • resume
    • POS
      • ctb5
      • ctb6
      • ud1
      • ud2
    • CWS
      • ctb6
      • msr
      • pku
  • vocab
    • tencent_vocab.txt, the vocab of pre-trained word embedding table.
  • embedding
    • word_embedding.txt
  • result
    • NER
      • weibo
      • note4
      • msra
      • resume
    • POS
      • ctb5
      • ctb6
      • ud1
      • ud2
    • CWS
      • ctb6
      • msr
      • pku
  • log

Run

  • 1.Convert .char.bmes file to .json file, python3 to_json.py

  • 2.run the shell, sh run_ner.sh

If you want to load my checkpoints, you need to make some revisions to your transformers.

My model is trained in distribution mode so it can not be directly loaded by single-GPU mode. You can follow the below steps to revise the transformers before load my checkpoints.

  • Enter the source code director of Transformer, cd source/transformers-master

  • Find the modeling_util.py, and positioned to about 995 lines

  • change the code as follows: image

  • Compile the revised source code and install. python3 setup.py install

Cite

@misc{liu2021lexicon,
      title={Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter}, 
      author={Wei Liu and Xiyan Fu and Yue Zhang and Wenming Xiao},
      year={2021},
      eprint={2105.07148},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
a hard-working boy!
Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Greg Werbin 5 Dec 27, 2021
SimplEx - Explaining Latent Representations with a Corpus of Examples

SimplEx - Explaining Latent Representations with a Corpus of Examples Code Author: Jonathan Crabbé ( Jonathan Crabbé 14 Dec 15, 2022

Wikidated : An Evolving Knowledge Graph Dataset of Wikidata’s Revision History

Wikidated Wikidated 1.0 is a dataset of Wikidata’s full revision history, which encodes changes between Wikidata revisions as sets of deletions and ad

Lukas Schmelzeisen 11 Aug 16, 2022
WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

30 Oct 28, 2022
Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space"

MotionCLIP Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space". Please visit our webpage for mor

Guy Tevet 173 Dec 26, 2022
A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items This repository co

Taimur Hassan 3 Mar 16, 2022
ArtEmis: Affective Language for Art

ArtEmis: Affective Language for Art Created by Panos Achlioptas, Maks Ovsjanikov, Kilichbek Haydarov, Mohamed Elhoseiny, Leonidas J. Guibas Introducti

Panos 268 Dec 12, 2022
Type4Py: Deep Similarity Learning-Based Type Inference for Python

Type4Py: Deep Similarity Learning-Based Type Inference for Python This repository contains the implementation of Type4Py and instructions for re-produ

Software Analytics Lab 45 Dec 15, 2022
Code & Experiments for "LILA: Language-Informed Latent Actions" to be presented at the Conference on Robot Learning (CoRL) 2021.

LILA LILA: Language-Informed Latent Actions Code and Experiments for Language-Informed Latent Actions (LILA), for using natural language to guide assi

Sidd Karamcheti 11 Nov 25, 2022
Dilated Convolution with Learnable Spacings PyTorch

Dilated-Convolution-with-Learnable-Spacings-PyTorch Ismail Khalfaoui Hassani Dilated Convolution with Learnable Spacings (abbreviated to DCLS) is a no

15 Dec 09, 2022
Using CNN to mimic the driver based on training data from Torcs

Behavioural-Cloning-in-autonomous-driving Using CNN to mimic the driver based on training data from Torcs. Approach First, the data was collected from

Sudharshan 2 Jan 05, 2022
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles

GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles This repository contains a method to generate 3D conformer ensembles direct

127 Dec 20, 2022
Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"

Train longer, generalize better - Big batch training This is a code repository used to generate the results appearing in "Train longer, generalize bet

Elad Hoffer 145 Sep 16, 2022
Perfect implement. Model shared. x0.5 (Top1:60.646) and 1.0x (Top1:69.402).

Shufflenet-v2-Pytorch Introduction This is a Pytorch implementation of faceplusplus's ShuffleNet-v2. For details, please read the following papers:

423 Dec 07, 2022
Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows WACV 2022 preprint:https://arxiv.org/abs/2107.1

Denis 156 Dec 28, 2022
Computationally efficient algorithm that identifies boundary points of a point cloud.

BoundaryTest Included are MATLAB and Python packages, each of which implement efficient algorithms for boundary detection and normal vector estimation

6 Dec 09, 2022
Keyword spotting on Arm Cortex-M Microcontrollers

Keyword spotting for Microcontrollers This repository consists of the tensorflow models and training scripts used in the paper: Hello Edge: Keyword sp

Arm Software 1k Dec 30, 2022
某学校选课系统GIF验证码数据集 + Baseline模型 + 上下游相关工具

elective-dataset-2021spring 某学校2021春季选课系统GIF验证码数据集(29338张) + 准确率98.4%的Baseline模型 + 上下游相关工具。 数据集采用 知识共享署名-非商业性使用 4.0 国际许可协议 进行许可。 Baseline模型和上下游相关工具采用

xmcp 27 Sep 17, 2021
Asynchronous Advantage Actor-Critic in PyTorch

Asynchronous Advantage Actor-Critic in PyTorch This is PyTorch implementation of A3C as described in Asynchronous Methods for Deep Reinforcement Learn

Reiji Hatsugai 38 Dec 12, 2022