Source code for TACL paper "KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation".

Related tags

Deep LearningKEPLER
Overview

KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation

Source code for TACL 2021 paper KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation.

Requirements

  • PyTorch version >= 1.1.0
  • Python version >= 3.5
  • For training new models, you'll also need an NVIDIA GPU and NCCL
  • For faster training install NVIDIA's apex library with the --cuda_ext option

Installation

This repo is developed on top of fairseq and you can install our version like installing fairseq from source:

pip install cython
git clone https://github.com/THU-KEG/KEPLER
cd KEPLER
pip install --editable .

Pre-training

Preprocessing for MLM data

Refer to the RoBERTa document for the detailed data preprocessing of the datasets used in the Masked Language Modeling (MLM) objective.

Preprocessing for KE data

The pre-training with KE objective requires the Wikidata5M dataset. Here we use the transductive split of Wikidata5M to demonstrate how to preprocess the KE data. The scripts used below are in this folder.

Download the Wikidata5M transductive data and its corresponding corpus, and then uncompress them:

wget -O wikidata5m_transductive.tar.gz https://www.dropbox.com/s/6sbhm0rwo4l73jq/wikidata5m_transductive.tar.gz?dl=1
wget -O wikidata5m_text.txt.gz https://www.dropbox.com/s/7jp4ib8zo3i6m10/wikidata5m_text.txt.gz?dl=1
tar -xzvf wikidata5m_transductive.tar.gz
gzip -d wikidata5m_text.txt.gz

Convert the original Wikidata5M files into the numerical format used in pre-training:

python convert.py --text wikidata5m_text.txt \
		--train wikidata5m_transductive_train.txt \
		--valid wikidata5m_transductive_valid.txt \
		--converted_text Qdesc.txt \
		--converted_train train.txt \
		--converted_valid valid.txt

Encode the entity descriptions with the GPT-2 BPE:

mkdir -p gpt2_bpe
wget -O gpt2_bpe/encoder.json https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json
wget -O gpt2_bpe/vocab.bpe https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe
python -m examples.roberta.multiprocessing_bpe_encoder \
		--encoder-json gpt2_bpe/encoder.json \
		--vocab-bpe gpt2_bpe/vocab.bpe \
		--inputs Qdesc.txt \
		--outputs Qdesc.bpe \
		--keep-empty \
		--workers 60

Do negative sampling and dump the whole training and validation data:

python KGpreprocess.py --dumpPath KE1 \
		-ns 1 \
		--ent_desc Qdesc.bpe \
		--train train.txt \
		--valid valid.txt

The above command generates training and validation data for one epoch. You can generate data for more epochs by running it many times and dump to different folders (e.g. KE2, KE3, ...).

There may be too many instances in the KE training data generated above and thus results in the time for training one epoch is too long. We then randomly split the KE training data into smaller parts and the number of training instances in each part aligns with the MLM training data:

python splitDump.py --Path KE1 \
		--split_size 6834352 \
		--negative_sampling_size 1

The KE1 will be splited into KE1_0, KE1_1, KE1_2, KE1_3. We then binarize them for training:

wget -O gpt2_bpe/dict.txt https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/dict.txt
for KE_Data in ./KE1_0/ ./KE1_1/ ./KE1_2/ ./KE1_3/ ; do \
    for SPLIT in head tail negHead negTail; do \
        fairseq-preprocess \ #if fairseq-preprocess cannot be founded, use "python -m fairseq_cli.preprocess" instead
            --only-source \
            --srcdict gpt2_bpe/dict.txt \
            --trainpref ${KE_Data}${SPLIT}/train.bpe \
            --validpref ${KE_Data}${SPLIT}/valid.bpe \
            --destdir ${KE_Data}${SPLIT} \
            --workers 60; \
    done \
done

Running

An example pre-training script:

TOTAL_UPDATES=125000    # Total number of training steps
WARMUP_UPDATES=10000    # Warmup the learning rate over this many updates
LR=6e-04                # Peak LR for polynomial LR scheduler.
NUM_CLASSES=2
MAX_SENTENCES=3        # Batch size.
NUM_NODES=16					 # Number of machines
ROBERTA_PATH="path/to/roberta.base/model.pt" #Path to the original roberta model
CHECKPOINT_PATH="path/to/checkpoints" #Directory to store the checkpoints
UPDATE_FREQ=`expr 784 / $NUM_NODES` # Increase the batch size

DATA_DIR=../Data

#Path to the preprocessed KE dataset, each item corresponds to a data directory for one epoch
KE_DATA=$DATA_DIR/KEI/KEI1_0:$DATA_DIR/KEI/KEI1_1:$DATA_DIR/KEI/KEI1_2:$DATA_DIR/KEI/KEI1_3:$DATA_DIR/KEI/KEI3_0:$DATA_DIR/KEI/KEI3_1:$DATA_DIR/KEI/KEI3_2:$DATA_DIR/KEI/KEI3_3:$DATA_DIR/KEI/KEI5_0:$DATA_DIR/KEI/KEI5_1:$DATA_DIR/KEI/KEI5_2:$DATA_DIR/KEI/KEI5_3:$DATA_DIR/KEI/KEI7_0:$DATA_DIR/KEI/KEI7_1:$DATA_DIR/KEI/KEI7_2:$DATA_DIR/KEI/KEI7_3:$DATA_DIR/KEI/KEI9_0:$DATA_DIR/KEI/KEI9_1:$DATA_DIR/KEI/KEI9_2:$DATA_DIR/KEI/KEI9_3:

DIST_SIZE=`expr $NUM_NODES \* 4`

fairseq-train $DATA_DIR/MLM \                #Path to the preprocessed MLM datasets
        --KEdata $KE_DATA \                      #Path to the preprocessed KE datasets
        --restore-file $ROBERTA_PATH \
        --save-dir $CHECKPOINT_PATH \
        --max-sentences $MAX_SENTENCES \
        --tokens-per-sample 512 \
        --task MLMetKE \                     
        --sample-break-mode complete \
        --required-batch-size-multiple 1 \
        --arch roberta_base \
        --criterion MLMetKE \
        --dropout 0.1 --attention-dropout 0.1 --weight-decay 0.01 \
        --optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-06 \
        --clip-norm 0.0 \
        --lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_UPDATES --warmup-updates $WARMUP_UPDATES \
        --update-freq $UPDATE_FREQ \
        --negative-sample-size 1 \ # Negative sampling size (one negative head and one negative tail)
        --ke-model TransE \ 
        --init-token 0 \
        --separator-token 2 \
        --gamma 4 \        # Margin of the KE objective
        --nrelation 822 \
        --skip-invalid-size-inputs-valid-test \
        --fp16 --fp16-init-scale 2 --threshold-loss-scale 1 --fp16-scale-window 128 \
        --reset-optimizer --distributed-world-size ${DIST_SIZE} --ddp-backend no_c10d --distributed-port 23456 \
        --log-format simple --log-interval 1 \
        #--relation-desc  #Add this option to encode the relation descriptions as relation embeddings (KEPLER-Rel in the paper)

Note: The above command assumes distributed training on 64x16GB V100 GPUs, 16 machines. If you have fewer GPUs or GPUs with less memory you may need to reduce $MAX_SENTENCES and increase $UPDATE_FREQ to compensate. Alternatively if you have more GPUs you can decrease $UPDATE_FREQ accordingly to increase training speed.

Note: If you are interested in the detailed implementations. The main implementations are in tasks/MLMetKE.py and criterions/MLMetKE.py. We encourage to master the fairseq toolkit before learning KEPLER implementation details.

Usage for NLP Tasks

We release the pre-trained checkpoint for NLP tasks. Since KEPLER does not modify RoBERTa model architectures, the KEPLER checkpoint can be directly used in the same way as RoBERTa checkpoints in the downstream NLP tasks.

Convert Checkpoint to HuggingFace's Transformers

In the fine-tuning and usage, it will be more convinent to convert the original fairseq checkpoints to HuggingFace's Transformers.

The conversion can be finished with this code. The example command is:

python -m transformers.convert_roberta_original_pytorch_checkpoint_to_pytorch \
			--roberta_checkpoint_path path_to_KEPLER_checkpoint \
			--pytorch_dump_folder_path path_to_output \

The path_to_KEPLER_checkpoint should contain model.pt (the downloaded KEPLER checkpoint) and dict.txt (standard RoBERTa dictionary file).

Note that the new versions of HuggingFace's Transformers library requires fairseq>=0.9.0, but the modified fairseq library in this repo and our checkpoints generated with is fairseq==0.8.0. The two versions are minorly different in the checkpoint format. Hence transformers<=2.2.2 or pytorch_transformers are needed for checkpoint conversion here.

TACRED

We suggest to use the converted HuggingFace's Transformers checkpoint as well as the OpenNRE library to perform experiments on TACRED. An example code will be updated soon.

To directly fine-tune KEPLER on TACRED in fairseq framework, please refer to this script. The script requires 2x16GB V100 GPUs.

FewRel

To finetune KEPLER on FewRel, you can use the offiicial code in the FewRel repo and set --encoder roberta as well as --pretrained_checkpoint path_to_converted_KEPLER.

OpenEntity

Please refer to this directory and this script for the codes of OpenEntity experiments.

These codes are modified on top of ERNIE.

GLUE

For the fine-tuning on GLUE tasks, refer to the official guide of RoBERTa.

Refer to this directory for the example scripts along with hyper-parameters.

Knowledge Probing (LAMA and LAMA-UHN)

For the experiments on LAMA, please refer to the codes in the LAMA repo and set --roberta_model_dir path_to_converted_KEPLER.

The LAMA-UHN dataset can be created with this scirpt.

Usage for Knowledge Embedding

We release the pre-trained checkpoint for KE tasks.

First, install the graphvite package in./graphvite following its instructions. GraphVite is an fast toolkit for network embedding and knowledge embedding, and we made some modifications on top of them.

Generate the entity embeddings and relation embeddings withgenerate_embeddings.py. The arguments are as following:

  • --data: the entity decription data, a single file, each line is an entity description. It should be BPE encoded and binarized like introduced in the Preprocessing for KE data
  • --ckpt_dir: path of the KEPLER checkpoint.
  • --ckpt: filename of the KEPLER checkpoint.
  • --dict: path to thedict.txt file.
  • --ent_emb: filename to dump entity embeddings (in numpy format).
  • --rel_emb: filename to dump relation embeddings (in numpy format).
  • --batch_size: batch size used in inference.

Then use evaluate_transe_transductive.py and ke_tool/evaluate_transe_inductive.py for KE evaluation. The arguments are as following:

  • --entity_embeddings: a numpy file storing the entity embeddings.
  • --relation_embeddings: a numpy file storing the relation embeddings.
  • --dim: the dimension of the relation and entity embeddings.
  • --entity2id: a json file that maps entity names (in the dataset) to the ids in the entity embedding numpy file, where the key is the entity names in the dataset, and the value is the id in the numpy file.
  • --relation2id: a json file that maps relation names (in the dataset) to the ids in the relation embedding numpy file.
  • --dataset: the test data file.
  • --train_dataset: the training data file (only for transductive setting).
  • --val_dataset: the validation data file (only for transductive setting).

Citation

If the codes help you, please cite our paper:

@article{wang2021KEPLER,
  title={KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation},
  author={Xiaozhi Wang and Tianyu Gao and Zhaocheng Zhu and Zhengyan Zhang and Zhiyuan Liu and Juanzi Li and Jian Tang},
  journal={Transactions of the Association for Computational Linguistics},
  year={2021},
  volume={9},
  doi = {10.1162/tacl_a_00360},
  pages={176-194}
}

These codes are developed on top of fairseq and GraphVite:

@inproceedings{ott2019fairseq,
  title = {fairseq: A Fast, Extensible Toolkit for Sequence Modeling},
  author = {Myle Ott and Sergey Edunov and Alexei Baevski and Angela Fan and Sam Gross and Nathan Ng and David Grangier and Michael Auli},
  booktitle = {Proceedings of NAACL-HLT 2019: Demonstrations},
  year = {2019},
}
@inproceedings{zhu2019graphvite,
    title={GraphVite: A High-Performance CPU-GPU Hybrid System for Node Embedding},
     author={Zhu, Zhaocheng and Xu, Shizhen and Qu, Meng and Tang, Jian},
     booktitle={The World Wide Web Conference},
     pages={2494--2504},
     year={2019},
     organization={ACM}
 }
Owner
THU-KEG
THU-KEG
Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

17 Jun 19, 2022
Demonstration of the Model Training as a CI/CD System in Vertex AI

Model Training as a CI/CD System This project demonstrates the machine model training as a CI/CD system in GCP platform. You will see more detailed wo

Chansung Park 19 Dec 28, 2022
A PyTorch version of You Only Look at One-level Feature object detector

PyTorch_YOLOF A PyTorch version of You Only Look at One-level Feature object detector. The input image must be resized to have their shorter side bein

Jianhua Yang 25 Dec 30, 2022
Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection"

CrossTeaching-SSOD 0. Introduction Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection" This repo include

Bruno Ma 9 Nov 29, 2022
Head and Neck Tumour Segmentation and Prediction of Patient Survival Project

Head-and-Neck-Tumour-Segmentation-and-Prediction-of-Patient-Survival Welcome to the Head and Neck Tumour Segmentation and Prediction of Patient Surviv

5 Oct 20, 2022
3D cascade RCNN for object detection on point cloud

3D Cascade RCNN This is the implementation of 3D Cascade RCNN: High Quality Object Detection in Point Clouds. We designed a 3D object detection model

Qi Cai 22 Dec 02, 2022
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Phil Wang 272 Dec 23, 2022
RTSeg: Real-time Semantic Segmentation Comparative Study

Real-time Semantic Segmentation Comparative Study The repository contains the official TensorFlow code used in our papers: RTSEG: REAL-TIME SEMANTIC S

Mennatullah Siam 592 Nov 18, 2022
GUI for a Vocal Remover that uses Deep Neural Networks.

GUI for a Vocal Remover that uses Deep Neural Networks.

4.4k Jan 07, 2023
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022
MegEngine implementation of YOLOX

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

旷视天元 MegEngine 77 Nov 22, 2022
Generate pixel-style avatars with python.

face2pixel Generate pixel-style avatars with python. Run: Clone the project: git clone https://github.com/theodorecooper/face2pixel install requiremen

Theodore Cooper 2 May 11, 2022
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)

BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s

1 Nov 11, 2021
PyElecCL - Electron Monte Carlo Second Checks

PyElecCL Python program to perform second checks for electron Monte Carlo radiat

Reese Haywood 3 Feb 22, 2022
Mscp jamf - Build compliance in jamf

mscp_jamf Build compliance in Jamf. This will build the following xml pieces to

Bob Gendler 3 Jul 25, 2022
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Gabriele Corso 56 Dec 23, 2022
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph

Total number of Spanning Trees in a Graph This is a python script just written f

Mehdi I. 0 Jul 18, 2022
Image to Image translation, image generataton, few shot learning

Semi-supervised Learning for Few-shot Image-to-Image Translation [paper] Abstract: In the last few years, unpaired image-to-image translation has witn

yaxingwang 49 Nov 18, 2022