Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Overview

Transformer in Transformer

Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch.

Install

$ pip install transformer-in-transformer

Usage

import torch
from transformer_in_transformer import TNT

tnt = TNT(
    image_size = 256,       # size of image
    patch_dim = 512,        # dimension of patch token
    pixel_dim = 24,         # dimension of pixel token
    patch_size = 16,        # patch size
    pixel_size = 4,         # pixel size
    depth = 6,              # depth
    num_classes = 1000,     # output number of classes
    attn_dropout = 0.1,     # attention dropout
    ff_dropout = 0.1        # feedforward dropout
)

img = torch.randn(2, 3, 256, 256)
logits = tnt(img) # (2, 1000)

Citations

@misc{han2021transformer,
    title   = {Transformer in Transformer}, 
    author  = {Kai Han and An Xiao and Enhua Wu and Jianyuan Guo and Chunjing Xu and Yunhe Wang},
    year    = {2021},
    eprint  = {2103.00112},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
Comments
  • Only works if pixel_size**2 == patch_size?

    Only works if pixel_size**2 == patch_size?

    Hi, is this only supposed to work if

    pixel_size**2 == patch_size 
    

    ?. When setting the patch_size to any number that doesn't fulfill the equation this error occurs:

    --> 146         pixels += rearrange(self.pixel_pos_emb, 'n d -> () n d')
        147 
        148         for pixel_attn, pixel_ff, pixel_to_patch_residual, patch_attn, patch_ff in self.layers:
    
    RuntimeError: The size of tensor a (4) must match the size of tensor b (64) at non-singleton dimension 1
    

    The error came when running

    tnt = TNT(
        image_size = 128,       # size of image
        patch_dim = 256,        # dimension of patch token
        pixel_dim = 24,         # dimension of pixel token
        patch_size = 16,        # patch size
        pixel_size = 2,         # pixel size
        depth = 6,              # depth
        heads = 1,
        num_classes = 2,     # output number of classes
        attn_dropout = 0.1,     # attention dropout
        ff_dropout = 0.1        # feedforward dropout,
    )
    img = torch.randn(2, 3, 128, 128)
    logits = tnt(img)
    

    Since I am completely new to einops its quite hard for me to debug :D Thanks

    opened by PhilippMarquardt 1
  • Not sure what is wrong!

    Not sure what is wrong!


    RuntimeError Traceback (most recent call last) in 14 15 img = torch.randn(1, 3, 256, 256) ---> 16 logits = tnt(img) # (2, 1000)

    ~/opt/anaconda3/envs/ml/lib/python3.8/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs) 1108 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks 1109 or _global_forward_hooks or _global_forward_pre_hooks): -> 1110 return forward_call(*input, **kwargs) 1111 # Do not call functions when jit is used 1112 full_backward_hooks, non_full_backward_hooks = [], []

    ~/opt/anaconda3/envs/ml/lib/python3.8/site-packages/transformer_in_transformer/tnt.py in forward(self, x) 159 patches = repeat(self.patch_tokens[:(n + 1)], 'n d -> b n d', b = b) 160 --> 161 patches += rearrange(self.patch_pos_emb[:(n + 1)], 'n d -> () n d') 162 pixels += rearrange(self.pixel_pos_emb, 'n d -> () n d') 163

    RuntimeError: a view of a leaf Variable that requires grad is being used in an in-place operation.

    opened by RisabBiswas 0
  • patch_tokens vs patch_pos_emb

    patch_tokens vs patch_pos_emb

    Hi!

    I'm trying to understand your TNT implementation and one thing that got me a bit confused is why there are 2 parameters patch_tokens and patch_pos_emb which seems to have the same purpose - to encode patch position. Isn't one of them redundant?

    self.patch_tokens = nn.Parameter(torch.randn(num_patch_tokens + 1, patch_dim))
    self.patch_pos_emb = nn.Parameter(torch.randn(num_patch_tokens + 1, patch_dim))
    ...
    patches = repeat(self.patch_tokens[:(n + 1)], 'n d -> b n d', b = b)
    patches += rearrange(self.patch_pos_emb[:(n + 1)], 'n d -> () n d')
    
    opened by stas-sl 0
  • Inconsistent model  params with MindSpore src code

    Inconsistent model params with MindSpore src code

    There's no function or readme description of TNT-S/TNT-B model in this codebase. Something like :

    def tnt_b(num_class):
        return TNT(img_size=384,
                   patch_size=16,
                   num_channels=3,
                   embedding_dim=640,
                   num_heads=10,
                   num_layers=12,
                   hidden_dim=640*4,
                   stride=4,
                   num_class=num_class)
    

    And heads number of inner block should be 4.... https://github.com/lucidrains/transformer-in-transformer/blob/main/transformer_in_transformer/tnt.py#L135

    Wondering if anyone reproduce the paper reported results with this codebase??

    opened by WongChen 0
  • Why the loss become NaN?

    Why the loss become NaN?

    It is a great project. I am very interested in Transformer in Transformer model. I had use your model to train on Vehicle-1M dataset. Vehicle-1M is a fine graied visual classification dataset. When I use this model the loss become NaN after some batch iteration. I had decrease the learning rate of AdamOptimizer and clipping the graident torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=2.0, norm_type=2) . But the loss still will become NaN sometimes. It seems that gradients are not big but they are in the same direction for many iterations. How to solve it?

    opened by yt7589 3
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
This is a project based on ConvNets used to identify whether a road is clean or dirty. We have used MobileNet as our base architecture and the weights are based on imagenet.

PROJECT TITLE: CLEAN/DIRTY ROAD DETECTION USING TRANSFER LEARNING Description: This is a project based on ConvNets used to identify whether a road is

Faizal Karim 3 Nov 06, 2022
NeuPy is a Tensorflow based python library for prototyping and building neural networks

NeuPy v0.8.2 NeuPy is a python library for prototyping and building neural networks. NeuPy uses Tensorflow as a computational backend for deep learnin

Yurii Shevchuk 729 Jan 03, 2023
unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier"

SquarePlus (Pytorch implement) unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier" SquarePlus Squareplus is a Softplus-L

SeeFun 3 Dec 29, 2021
official implementation for the paper "Simplifying Graph Convolutional Networks"

Simplifying Graph Convolutional Networks Updates As pointed out by #23, there was a subtle bug in our preprocessing code for the reddit dataset. After

Tianyi 727 Jan 01, 2023
This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees

Mega-NeRF This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees used by the Mega-NeRF-Dynamic viewe

cmusatyalab 260 Dec 28, 2022
TensorFlow Tutorials with YouTube Videos

TensorFlow Tutorials Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction These tutorials are intended for beginne

9.1k Jan 02, 2023
Implementation for the EMNLP 2021 paper "Interactive Machine Comprehension with Dynamic Knowledge Graphs".

Interactive Machine Comprehension with Dynamic Knowledge Graphs Implementation for the EMNLP 2021 paper. Dependencies apt-get -y update apt-get instal

Xingdi (Eric) Yuan 19 Aug 23, 2022
Build and run Docker containers leveraging NVIDIA GPUs

NVIDIA Container Toolkit Introduction The NVIDIA Container Toolkit allows users to build and run GPU accelerated Docker containers. The toolkit includ

NVIDIA Corporation 15.6k Jan 01, 2023
Torchreid: Deep learning person re-identification in PyTorch.

Torchreid Torchreid is a library for deep-learning person re-identification, written in PyTorch. It features: multi-GPU training support both image- a

Kaiyang 3.7k Jan 05, 2023
retweet 4 satoshi ⚡️

rt4sat retweet 4 satoshi This bot is the codebase for https://twitter.com/rt4sat please feel free to create an issue if you saw any bugs basically thi

6 Sep 30, 2022
First-Order Probabilistic Programming Language

FOPPL: A First-Order Probabilistic Programming Language This is an implementation of FOPPL, an S-expression based probabilistic programming language d

Renato Costa 23 Dec 20, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

TUCH This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright License fo

Lea Müller 45 Jan 07, 2023
JupyterNotebook - C/C++, Javascript, HTML, LaTex, Shell scripts in Jupyter Notebook Also run them on remote computer

JupyterNotebook Read, write and execute C, C++, Javascript, Shell scripts, HTML, LaTex in jupyter notebook, And also execute them on remote computer R

1 Jan 09, 2022
⚾🤖⚾ Automatic baseball pitching overlay in realtime

⚾ Automatically overlaying pitch motion and trajectory with machine learning! This project takes your baseball pitching clips and automatically genera

Tony Chou 240 Dec 05, 2022
Publication describing 3 ML examples at NSLS-II and interfacing into Bluesky

Machine learning enabling high-throughput and remote operations at large-scale user facilities. Overview This repository contains the source code and

BNL 4 Sep 24, 2022
mmfewshot is an open source few shot learning toolbox based on PyTorch

OpenMMLab FewShot Learning Toolbox and Benchmark

OpenMMLab 514 Dec 28, 2022
This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

Mohamed Ayman 33 Dec 02, 2022
Identify the emotion of multiple speakers in an Audio Segment

MevonAI - Speech Emotion Recognition Identify the emotion of multiple speakers in a Audio Segment Report Bug · Request Feature Try the Demo Here Table

Suyash More 110 Dec 03, 2022
python library for invisible image watermark (blind image watermark)

invisible-watermark invisible-watermark is a python library and command line tool for creating invisible watermark over image.(aka. blink image waterm

Shield Mountain 572 Jan 07, 2023