T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time

Overview

T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time

The first Lidar-only odometry framework with high performance based on truncated least squares and Open3D point cloud library, The foremost improvement include:

  • Fast and precision pretreatment module, multi-region ground extraction and dynamic curved-voxel clustering perform ground point extraction and category segmentation.
  • Feature extraction based on principal component analysis(PCA) elaborate four distinctive feature,including: planar features, ground features, edge features, sphere features
  • There are three kinds of residual functions based on truncated least squares method for directly processing above features which are point-to-point, point-to-line, and point-to-plane.
  • Open3d point cloud library is integrated into SLAM algorithm framework for the first time. We extend more functions and implemented the message interface related to ROS.

[Demo Video] [Preprint Paper]

drawing

drawing drawing drawing drawing

Note that regard to pure odometry without corrections through loop closures, T-LOAM delivers much less drift than F-LOAM.

Framework overview

drawing

Each frame of the 3D LiDAR is processed as input. Four main processing modules are introduced to construct the backbone of the algorithm: (a) multi-region ground extraction module, (b) dynamic curved-voxel clustering module, (c) feature extraction module, (d) pose optimization module.

Evaluation

KITTI Sequence 00 F-LOAM T-LOAM
Translational Error(%) 1.11 0.98
Relative Error(°/100m) 0.40 0.60

Graphic Result(Path and Translation)

F-LOAM

drawing

T-LOAM

drawing

F-LOAM

drawing

T-LOAM

drawing

Dependency

-ROS(Melodic Ubuntu18.04)

sudo apt-get install python-catkin-tools ros-melodic-ecl-threads ros-melodic-jsk-recognition-msgs ros-melodic-jsk-visualization ros-melodic-velodyne-msgs

-YAML(0.6.3) Note that you must build a shared library due to we utilize the ros nodelet package.

tar -zxvf yaml-cpp-yaml-cpp-0.6.3.tar.gz
cd yaml-2.3.0 && mkdir build && cd build
cmake [-G generator] [-DYAML_BUILD_SHARED_LIBS=ON] ..
make 
sudo make install

-Open3D(A Modern Library for 3D Data Processing 0.12.0)

Please note that open3d installation will be a slightly troublesome process, please be patient. Another problem that needs attention is that Open3D-ML cannot be used in ROS at the same time due to the link error2286 and error3432. In order to fix this, you need to specify the cmake flag -DGLIBCXX_USE_CXX11_ABI=ON. However, the latest Tensorflow2.4 installed through conda(not pip) already supports the C++11 API, you can check the API with print(tensorflow.__cxx11_abi_flag__). If the flag is true, you can set the compile flag -DBUILD_TENSORFLOW_OPS=ON Next, you can complete the installation according to the instructions

cd Open3D
util/scripts/install-deps-ubuntu.sh
mkdir build && cd build 
cmake \
    -DBUILD_SHARED_LIBS=ON \
    -DPYTHON_EXECUTABLE=$(which python3) \
    -DBUILD_CUDA_MODULE=ON \
    -DGLIBCXX_USE_CXX11_ABI=ON \
    -DBUILD_LIBREALSENSE=ON  \
    -DCMAKE_BUILD_TYPE=Release \
    -DCMAKE_INSTALL_PREFIX=/usr/local \
    -DBUILD_PYTORCH_OPS=OFF \
    -DBUILD_TENSORFLOW_OPS=OFF \
    -DBUNDLE_OPEN3D_ML=ON \
    -DOPEN3D_ML_ROOT=${replace with own Open3D-ML path} \
    ../
make -j4
sudo make install 

If you have clone problems, you can download it directly from the link below.

Baidu Disk code: khy9 or Google Drive

-Ceres Solver(A large scale non-linear optimization library 2.0) you can complete the installation according to the guide

Installation

Now create the Catkin Environment:

mkdir -p ~/tloam_ws/src
cd ~/tloam_ws
catkin init
catkin config --merge-devel
catkin config --cmake-args -DCMAKE_BUILD_TYPE=Release

And clone the project:

cd src
git clone https://github.com/zpw6106/tloam.git
catkin build

Usage

Download the KITTI Odometry Dataset (Graviti can provide faster download speed in China), then organize it according to the following structure, and modify the read path in the config/kitti/kitti_reader.yaml

drawing

-Example for running T-LOAM using the KITTI Dataset

roslaunch tloam tloam_kitti.launch

Contributors

Pengwei Zhou (Email: [email protected])

BibTex Citation

Thank you for citing our T-LOAM paper on IEEEif you use any of this code:

@ARTICLE{9446309,
  author={Zhou, Pengwei and Guo, Xuexun and Pei, Xiaofei and Chen, Ci},
  journal={IEEE Transactions on Geoscience and Remote Sensing}, 
  title={T-LOAM: Truncated Least Squares LiDAR-Only Odometry and Mapping in Real Time}, 
  year={2021},
  volume={},
  number={},
  pages={1-13},
  doi={10.1109/TGRS.2021.3083606}
  }

Credits

We hereby recommend reading A-LOAM ,floam and TEASER for reference and thank them for making their work public.

License

The source code is released under GPLv3 license.

I am constantly working on improving this code. For any technical issues or commercial use, please contact me([email protected]).

Owner
Pengwei Zhou
Lidar SLAM & Sensor Fusion
Pengwei Zhou
Project NII pytorch scripts

project-NII-pytorch-scripts By Xin Wang, National Institute of Informatics, since 2021 I am a new pytorch user. If you have any suggestions or questio

Yamagishi and Echizen Laboratories, National Institute of Informatics 184 Dec 23, 2022
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins

BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio

Narinder Singh Punn 12 Dec 04, 2022
PyTorch implementation of the YOLO (You Only Look Once) v2

PyTorch implementation of the YOLO (You Only Look Once) v2 The YOLOv2 is one of the most popular one-stage object detector. This project adopts PyTorc

申瑞珉 (Ruimin Shen) 433 Nov 24, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
Code of Periodic Activation Functions Induce Stationarity

Periodic Activation Functions Induce Stationarity This repository is the official implementation of the methods in the publication: L. Meronen, M. Tra

AaltoML 12 Jun 07, 2022
PerfFuzz: Automatically Generate Pathological Inputs for C/C++ programs

PerfFuzz Performance problems in software can arise unexpectedly when programs are provided with inputs that exhibit pathological behavior. But how ca

Caroline Lemieux 125 Nov 18, 2022
Official Repository for the paper "Improving Baselines in the Wild".

iWildCam and FMoW baselines (WILDS) This repository was originally forked from the official repository of WILDS datasets (commit 7e103ed) For general

Kazuki Irie 3 Nov 24, 2022
Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions"

ModelNet-C Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com

Jiawei Ren 45 Dec 28, 2022
Image morphing without reference points by applying warp maps and optimizing over them.

Differentiable Morphing Image morphing without reference points by applying warp maps and optimizing over them. Differentiable Morphing is machine lea

Alex K 380 Dec 19, 2022
Simple tutorials using Google's TensorFlow Framework

TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial

Nathan Lintz 6k Jan 06, 2023
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
An Industrial Grade Federated Learning Framework

DOC | Quick Start | 中文 FATE (Federated AI Technology Enabler) is an open-source project initiated by Webank's AI Department to provide a secure comput

Federated AI Ecosystem 4.8k Jan 09, 2023
Code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language"

The repository provides the source code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language" submitted to HA

Sherzod Hakimov 3 Aug 04, 2022
O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis

O-CNN This repository contains the implementation of our papers related with O-CNN. The code is released under the MIT license. O-CNN: Octree-based Co

Microsoft 607 Dec 28, 2022
Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation

UniFuse (RAL+ICRA2021) Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation, arXiv, Demo Preparation I

Alibaba 47 Dec 26, 2022
CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)

CMUA-Watermark The official code for CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022) arxiv. It is bas

50 Nov 26, 2022
Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

SAGCN - Official PyTorch Implementation | Paper | Project Page This is the official implementation of the paper "Steganographer detection via a simila

ZHANG Zhi 1 Nov 26, 2021
Codebase for the paper titled "Continual learning with local module selection"

This repository contains the codebase for the paper Continual Learning via Local Module Composition. Setting up the environemnt Create a new conda env

Oleksiy Ostapenko 20 Dec 10, 2022
MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021)

MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021) A pytorch implementation of MicroNet. If you use this code in your research

Yunsheng Li 293 Dec 28, 2022