Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

Overview

SAGCN - Official PyTorch Implementation

| Paper | Project Page

This is the official implementation of the paper "Steganographer detection via a similarity accumulation graph convolutional network". NOTE: We are refactoring this project to the best practice of engineering.

Abstract

Steganographer detection aims to identify guilty users who conceal secret information in a number of images for the purpose of covert communication in social networks. Existing steganographer detection methods focus on designing discriminative features but do not explore relationship between image features or effectively represent users based on features. In these methods, each image is recognized as an equivalent, and each user is regarded as the distribution of all images shared by the corresponding user. However, the nuances of guilty users and innocent users are difficult to recognize with this flattened method. In this paper, the steganographer detection task is formulated as a multiple-instance learning problem in which each user is considered to be a bag, and the shared images are multiple instances in the bag. Specifically, we propose a similarity accumulation graph convolutional network to represent each user as a complete weighted graph, in which each node corresponds to features extracted from an image and the weight of an edge is the similarity between each pair of images. The constructed unit in the network can take advantage of the relationships between instances so that common patterns of positive instances can be enhanced via similarity accumulations. Instead of operating on a fixed original graph, we propose a novel strategy for reconstructing and pooling graphs based on node features to iteratively operate multiple convolutions. This strategy can effectively address oversmoothing problems that render nodes indistinguishable although they share different instance-level labels. Compared with the state-of-the-art method and other representative graph-based models, the proposed framework demonstrates its effectiveness and reliability ability across image domains, even in the context of large-scale social media scenarios. Moreover, the experimental results also indicate that the proposed network can be generalized to other multiple-instance learning problems.

Roadmap

After many rounds of revision, the project code implementation is not elegant. Thus, in order to help the readers to reproduce the experimental results of this paper quickly, we will open-source our study following this roadmap:

  • refactor and open-source all the model files, training files, and test files of the proposed method for comparison experiments.
  • refactor and open-source the visualization experiments.
  • refactor and open-source the APIs for the real-world steganographer detection in an out-of-box fashion.

Quick Start

Dataset and Pre-processing

We use the MDNNSD model to extract a 320-D feature from each image and save the extracted features in different .mat files. You should check ./data/train and ./data/test to confirm you have the dataset ready before experiments. For example, cover.mat and suniward_01.mat should be placed in the ./data/train and ./data/test folders.

Then, we provide a dataset tool to distribute image features and construct innocent users and guilty users as described in the paper, for example:

python preprocess_dataset.py --target suniward_01_100 --guilty_file suniward_01 --is_train --is_test --is_reset --mixin_num 0

Train the proposed SAGCN

To obtain our designed model for detecting steganographers, we provide an entry file with flexible command-line options, arguments to train the proposed SAGCN on the desired dataset under various experiment settings, for example:

python main.py --epochs 80 --batch_size 100 --model_name SAGCN --folder_name suniward_01_100 --parameters_name=sagcn_suniward_01_100 --mode train --learning_rate 1e-2 --gpu 1
python main.py --epochs 80 --batch_size 100 --model_name SAGCN --folder_name suniward_01_100 --parameters_name=sagcn_suniward_01_100 --mode train --learning_rate 1e-2 --gpu 1

Test the proposed SAGCN

For reproducing the reported experimental results, you just need to pass command-line options of the corresponding experimental setting, such as:

python main.py --batch_size 100 --model_name SAGCN --parameters_name sagcn_suniward_01_100 --folder_name suniward_01_100 --mode test --gpu 1

Visualize

If you set summary to True during training, you can use tensorboard to visualize the training process.

tensorboard --logdir logs --host 0.0.0.0 --port 8088

Requirement

  • Hardware: GPUs Tesla V100-PCIE (our version)
  • Software:
    • h5py==2.7.1 (our version)
    • scipy==1.1.0 (our version)
    • tqdm==4.25.0 (our version)
    • numpy==1.14.3 (our version)
    • torch==0.4.1 (our version)

Contact

If you have any questions, please feel free to open an issue.

Contribution

We thank all the people who already contributed to this project:

  • Zhi ZHANG
  • Mingjie ZHENG
  • Shenghua ZHONG
  • Yan LIU

Citation Information

If you find the project useful, please cite:

@article{zhang2021steganographer,
  title={Steganographer detection via a similarity accumulation graph convolutional network},
  author={Zhang, Zhi and Zheng, Mingjie and Zhong, Sheng-hua and Liu, Yan},
  journal={Neural Networks},
  volume={136},
  pages={97--111},
  year={2021}
}
Owner
ZHANG Zhi
日知其所亡,月无忘其所能
ZHANG Zhi
The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Published by SpaceML • About SpaceML • Quick Colab Example Self-Supervised Learner The Self-Supervised Learner can be used to train a classifier with

SpaceML 92 Nov 30, 2022
Project repo for the paper SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition

SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition (BMVC 2021) Project repo for the paper SILT: Self-supervised Lighting Trans

6 Dec 04, 2022
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Rex Cheng 364 Jan 03, 2023
This repository contains demos I made with the Transformers library by HuggingFace.

Transformers-Tutorials Hi there! This repository contains demos I made with the Transformers library by 🤗 HuggingFace. Currently, all of them are imp

3.5k Jan 01, 2023
Utilizes Pose Estimation to offer sprinters cues based on an image of their running form.

Running-Form-Correction Utilizes Pose Estimation to offer sprinters cues based on an image of their running form. How to Run Dependencies You will nee

3 Nov 08, 2022
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size

NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size Xuanyi Dong, Lu Liu, Katarzyna Musial, Bogdan Gabrys in IEEE Transactions o

D-X-Y 137 Dec 20, 2022
Official codebase for ICLR oral paper Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling

CLIORA This is the official codebase for ICLR oral paper: Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling. We introduce

Bo Wan 32 Dec 23, 2022
Package for extracting emotions from social media text. Tailored for financial data.

EmTract: Extracting Emotions from Social Media Text Tailored for Financial Contexts EmTract is a tool that extracts emotions from social media text. I

13 Nov 17, 2022
Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORAL)

Scribble-Supervised LiDAR Semantic Segmentation Dataset and code release for the paper Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORA

102 Dec 25, 2022
GNEE - GAT Neural Event Embeddings

GNEE - GAT Neural Event Embeddings This repository contains source code for the GNEE (GAT Neural Event Embeddings) method introduced in the paper: "Se

João Pedro Rodrigues Mattos 0 Sep 15, 2021
Pytorch implementation of "A simple neural network module for relational reasoning" (Relational Networks)

Pytorch implementation of Relational Networks - A simple neural network module for relational reasoning Implemented & tested on Sort-of-CLEVR task. So

Kim Heecheol 800 Dec 05, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
Code for all the Advent of Code'21 challenges mostly written in python

Advent of Code 21 Code for all the Advent of Code'21 challenges mostly written in python. They are not necessarily the best or fastest solutions but j

4 May 26, 2022
This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"

TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network This repository contains code from the paper "TTS-GAN: A Transformer-based Tim

Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab) - Texas State University 108 Dec 29, 2022
Cross-Task Consistency Learning Framework for Multi-Task Learning

Cross-Task Consistency Learning Framework for Multi-Task Learning Tested on numpy(v1.19.1) opencv-python(v4.4.0.42) torch(v1.7.0) torchvision(v0.8.0)

Aki Nakano 2 Jan 08, 2022
Efficient and intelligent interactive segmentation annotation software

Efficient and intelligent interactive segmentation annotation software

294 Dec 30, 2022
Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021)

Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021) This is the implementation of PSD (ICCV 2021),

12 Dec 12, 2022
ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021)

ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021) Project Page | Video | Paper | Data We present a novel metho

65 Nov 28, 2022
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Environments Effi

Weirui Ye 671 Jan 03, 2023