A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

Overview

Text to Subtitles - Python

main2

This python file creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

1. Table of Contents

2. Description

2.1 Problem

In a fast-paced TV, Film, and Video production environment Video Editors are often faced with the task to create subtitles quickly and efficiently. They will often have a script that they manually into Video Editing software, one subtitle at a time, then adjust the timing.

In the case of Documentary films or long interviews, the number of subtitles can be overwhelming. In addition, there can be multiple subtitles in different languages.

2.2 Solution

Instead of manually typing the text in Video Editing Software or copy-pasting it from a text file one subtitle at a time this python script automatically converts text paragraphs, located in a text file into a standard .srt subtitle file. It can be then imported into any Video Editing Software.

The script creates subtitles of the same length, such as 3 seconds. Therefore, manual adjustments are still needed after importing the subtitles. Nevertheless, this workflow has proven to be much faster than the full manual process described above.

Input:

Call me Ishmael.

Some years ago,
never mind how long precisely,

having little or no money in my purse,
and nothing particular

Output:

1
00:00:00,000 --> 0:00:03,000
Call me Ishmael.

2
00:00:03,000 --> 0:00:06,000
Some years ago,
never mind how long precisely,

3
00:00:06,000 --> 0:00:09,000
having little or no money in my purse,
and nothing particular

2.3 Motivation behind the project

I first created this workflow when I was Directing and Video Editing TV mini-series. Since deadlines were extremely tight I was looking at every opportunity to speed up the delivery times while maintaining high quality. I later used it for commercial Videography projects. This solution fits my workflow very well and has proven to be very useful.

2.4 Development history

It was originally built simply by using a stack of regular expressions executed in the TextSoap.app along with some operations in Excel and manula copy-pasting. Later most of the steps were combined in a single Python script that is presented here.

3. Technologies Used

  • Python 3.9.4, compatible with Python 2.7 and above
  • datetime integrated module to work with date and time
  • re integrated regular expression operations module
  • os a portable way of using operating system dependent functionality

4. Installation

Download text_to_video_subtitles.py file from this GitHub repository.

5. Usage

5.1 Prepare .txt file

Take existing script or type it from scratch. Then manually split it into paragraphs in the following format:

Call me Ishmael.

Some years ago,
never mind how long precisely,

having little or no money in my purse,
and nothing particular
  • A single line represents a single line in a subtitle.
  • Empty line defines where one subtitle ends and a new one begins.
  • Normally one subtitle has one or two lines, but it can have more.

5.2 Rename and move .txt file

Paste the text into a text editor, then save it as subtitles.txt, and move the file into the same folder with text_to_subtitles.py.

5.3 Launch Python script

Open Terminal.app. Type python, add space, then drag and drop text_to_video_markers.py and press Return.

run python script with terminal

Alternatively, you can install the latest version of Python. Then right-click on text_to_video_markers.py file and choose Open with -> Python Launcher.app.

open python file with python launcher

Either method will run the script and create subtitles.srt file in the same folder.

5.4 Open subtitles.srt with FinalCut Pro

In FinalCut Pro choose File -> Import -> Captions..., then navigate to newly created subtitles.srt and select Import. This will import subtitles into an existing project. They will be visible in Timeline, Index (Captions), and Viewer. You can now easily adjust individual subtitles in Timeline and edit the text in Timeline and Inspector.

That's it! We have just automatically converted text with paragraphs into a universal .srt subtitle file for further adjustments and manipulations in Video editing software such as FinalCut Pro..

finalcut pro markers imported from text

6. Project Status

The project is: complete I am no longer working on it since I am not working for TV any longer. But if you have some ideas or want me to modify something contact me and we should be able to collaborate.

7. Known Limitations

  • An input text file must be named subtitles.txt
  • Text in subtitles.txt** file must be split into paragraphs.
  • Both text_to_subtitles.py and subtitles.txt must be located in the same folder.
  • The default subtitle length is 3 seconds and can only be changed inside text_to_subtitles.py code by changing the number in dursec = 3 statement.

8. Room for Improvement

  • Testing and logging the issues.
  • Making python script an executable file.
  • Developing GUI to be able to specify .txt and .fcpxml input files with any name and location.
  • Building a web app.

9. License

This project is open-source and available under the GNU General Public License v3.0

10. Contact

Created by @DmytroNorth - feel free to contact me at [email protected]!

Owner
Dmytro North
Dmytro North
Python library for analysis of time series data including dimensionality reduction, clustering, and Markov model estimation

deeptime Releases: Installation via conda recommended. conda install -c conda-forge deeptime pip install deeptime Documentation: deeptime-ml.github.io

495 Dec 28, 2022
Python Interview Questions

Python Interview Questions Clone the code to your computer. You need to understand the code in main.py and modify the content in if __name__ =='__main

ClassmateLin 575 Dec 28, 2022
Sdf sparse conv - Deep Learning on SDF for Classifying Brain Biomarkers

Deep Learning on SDF for Classifying Brain Biomarkers To reproduce the results f

1 Jan 25, 2022
Download from Onlyfans.com.

OnlySave: Onlyfans downloader Getting Started: Download the setup executable from the latest release. Install and run. Only works on Windows currently

4 May 30, 2022
PyTorch implementation of the REMIND method from our ECCV-2020 paper "REMIND Your Neural Network to Prevent Catastrophic Forgetting"

REMIND Your Neural Network to Prevent Catastrophic Forgetting This is a PyTorch implementation of the REMIND algorithm from our ECCV-2020 paper. An ar

Tyler Hayes 72 Nov 27, 2022
This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels].

CGPN This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels]. Req

10 Sep 12, 2022
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Requirements python 3.7 pytorch-gpu 1.7 numpy 1.19.4 pytorch_

12 Oct 29, 2022
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
A curated list of automated deep learning (including neural architecture search and hyper-parameter optimization) resources.

Awesome AutoDL A curated list of automated deep learning related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awe

D-X-Y 2k Dec 30, 2022
Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images

SASSnet Code for paper: Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images(MICCAI 2020) Our code is origin from UA-MT You can fin

klein 125 Jan 03, 2023
SIR model parameter estimation using a novel algorithm for differentiated uniformization.

TenSIR Parameter estimation on epidemic data under the SIR model using a novel algorithm for differentiated uniformization of Markov transition rate m

The Spang Lab 4 Nov 30, 2022
A project studying the influence of communication in multi-objective normal-form games

Communication in Multi-Objective Normal-Form Games This repo consists of five different types of agents that we have used in our study of communicatio

Willem Röpke 0 Dec 17, 2021
MohammadReza Sharifi 27 Dec 13, 2022
TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
[NeurIPS 2020] This project provides a strong single-stage baseline for Long-Tailed Classification, Detection, and Instance Segmentation (LVIS).

A Strong Single-Stage Baseline for Long-Tailed Problems This project provides a strong single-stage baseline for Long-Tailed Classification (under Ima

Kaihua Tang 514 Dec 23, 2022
This Jupyter notebook shows one way to implement a simple first-order low-pass filter on sampled data in discrete time.

How to Implement a First-Order Low-Pass Filter in Discrete Time We often teach or learn about filters in continuous time, but then need to implement t

Joshua Marshall 4 Aug 24, 2022
A flexible submap-based framework towards spatio-temporally consistent volumetric mapping and scene understanding.

Panoptic Mapping This package contains panoptic_mapping, a general framework for semantic volumetric mapping. We provide, among other, a submap-based

ETHZ ASL 194 Dec 20, 2022
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
Algorithmic trading with deep learning experiments

Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph

Alex Honchar 1.4k Jan 02, 2023
SynNet - synthetic tree generation using neural networks

SynNet This repo contains the code and analysis scripts for our amortized approach to synthetic tree generation using neural networks. Our model can s

Wenhao Gao 60 Dec 29, 2022