EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks

Related tags

Deep LearningEncT5
Overview

EncT5

(Unofficial) Pytorch Implementation of EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks

About

  • Finetune T5 model for classification & regression by only using the encoder layers.
  • Implemented of Tokenizer and Model for EncT5.
  • Add BOS Token () for tokenizer, and use this token for classification & regression.
    • Need to resize embedding as vocab size is changed. (model.resize_token_embeddings())
  • BOS and EOS token will be automatically added as below.
    • single sequence: X
    • pair of sequences: A B

Requirements

Highly recommend to use the same version of transformers.

transformers==4.15.0
torch==1.8.1
sentencepiece==0.1.96
datasets==1.17.0
scikit-learn==0.24.2

How to Use

from enc_t5 import EncT5ForSequenceClassification, EncT5Tokenizer

model = EncT5ForSequenceClassification.from_pretrained("t5-base")
tokenizer = EncT5Tokenizer.from_pretrained("t5-base")

# Resize embedding size as we added bos token
if model.config.vocab_size < len(tokenizer.get_vocab()):
    model.resize_token_embeddings(len(tokenizer.get_vocab()))

Finetune on GLUE

Setup

  • Use T5 1.1 base for finetuning.
  • Evaluate on TPU. See run_glue_tpu.sh for more details.
  • Use AdamW optimizer instead of Adafactor.
  • Check best checkpoint on every epoch by using EarlyStoppingCallback.

Results

Metric Result (Paper) Result (Implementation)
CoLA Matthew 53.1 52.4
SST-2 Acc 94.0 94.5
MRPC F1/Acc 91.5/88.3 91.7/88.0
STS-B PCC/SCC 80.5/79.3 88.0/88.3
QQP F1/Acc 72.9/89.8 88.4/91.3
MNLI Mis/Matched 88.0/86.7 87.5/88.1
QNLI Acc 93.3 93.2
RTE Acc 67.8 69.7
You might also like...
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f

 Cartoon-StyleGan2 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation
Cartoon-StyleGan2 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation

Fine-tuning StyleGAN2 for Cartoon Face Generation

Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Fine-tuning StyleGAN2 for Cartoon Face Generation
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker This repository contai

Implementation of the paper "Fine-Tuning Transformers: Vocabulary Transfer"

Transformer-vocabulary-transfer Implementation of the paper "Fine-Tuning Transfo

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb

Comments
  • Enable tokenizer to be loaded by sentence-transformer

    Enable tokenizer to be loaded by sentence-transformer

    🚀 Feature Request

    Integration into sentence-transformer library.

    📎 Additional context

    I tried to load this tokenizer with sentence-transformer library but it failed. AutoTokenizer couldn't load this tokenizer. So, I simply added code to override save_pretrained and its dependencies so that this tokenizer is saved as T5Tokenizer, its super class.

            def save_pretrained(
            self,
            save_directory,
            legacy_format: Optional[bool] = None,
            filename_prefix: Optional[str] = None,
            push_to_hub: bool = False,
            **kwargs,
        ):
            if os.path.isfile(save_directory):
                logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
                return
    
            if push_to_hub:
                commit_message = kwargs.pop("commit_message", None)
                repo = self._create_or_get_repo(save_directory, **kwargs)
    
            os.makedirs(save_directory, exist_ok=True)
    
            special_tokens_map_file = os.path.join(
                save_directory, (filename_prefix + "-" if filename_prefix else "") + SPECIAL_TOKENS_MAP_FILE
            )
            tokenizer_config_file = os.path.join(
                save_directory, (filename_prefix + "-" if filename_prefix else "") + TOKENIZER_CONFIG_FILE
            )
    
            tokenizer_config = copy.deepcopy(self.init_kwargs)
            if len(self.init_inputs) > 0:
                tokenizer_config["init_inputs"] = copy.deepcopy(self.init_inputs)
            for file_id in self.vocab_files_names.keys():
                tokenizer_config.pop(file_id, None)
    
            # Sanitize AddedTokens
            def convert_added_tokens(obj: Union[AddedToken, Any], add_type_field=True):
                if isinstance(obj, AddedToken):
                    out = obj.__getstate__()
                    if add_type_field:
                        out["__type"] = "AddedToken"
                    return out
                elif isinstance(obj, (list, tuple)):
                    return list(convert_added_tokens(o, add_type_field=add_type_field) for o in obj)
                elif isinstance(obj, dict):
                    return {k: convert_added_tokens(v, add_type_field=add_type_field) for k, v in obj.items()}
                return obj
    
            # add_type_field=True to allow dicts in the kwargs / differentiate from AddedToken serialization
            tokenizer_config = convert_added_tokens(tokenizer_config, add_type_field=True)
    
            # Add tokenizer class to the tokenizer config to be able to reload it with from_pretrained
            ############################################################################
            tokenizer_class = self.__class__.__base__.__name__
            ############################################################################
            # Remove the Fast at the end unless we have a special `PreTrainedTokenizerFast`
            if tokenizer_class.endswith("Fast") and tokenizer_class != "PreTrainedTokenizerFast":
                tokenizer_class = tokenizer_class[:-4]
            tokenizer_config["tokenizer_class"] = tokenizer_class
            if getattr(self, "_auto_map", None) is not None:
                tokenizer_config["auto_map"] = self._auto_map
            if getattr(self, "_processor_class", None) is not None:
                tokenizer_config["processor_class"] = self._processor_class
    
            # If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
            # loaded from the Hub.
            if self._auto_class is not None:
                custom_object_save(self, save_directory, config=tokenizer_config)
    
            with open(tokenizer_config_file, "w", encoding="utf-8") as f:
                f.write(json.dumps(tokenizer_config, ensure_ascii=False))
            logger.info(f"tokenizer config file saved in {tokenizer_config_file}")
    
            # Sanitize AddedTokens in special_tokens_map
            write_dict = convert_added_tokens(self.special_tokens_map_extended, add_type_field=False)
            with open(special_tokens_map_file, "w", encoding="utf-8") as f:
                f.write(json.dumps(write_dict, ensure_ascii=False))
            logger.info(f"Special tokens file saved in {special_tokens_map_file}")
    
            file_names = (tokenizer_config_file, special_tokens_map_file)
    
            save_files = self._save_pretrained(
                save_directory=save_directory,
                file_names=file_names,
                legacy_format=legacy_format,
                filename_prefix=filename_prefix,
            )
    
            if push_to_hub:
                url = self._push_to_hub(repo, commit_message=commit_message)
                logger.info(f"Tokenizer pushed to the hub in this commit: {url}")
    
            return save_files
    
    enhancement 
    opened by kwonmha 0
Releases(v1.0.0)
  • v1.0.0(Jan 22, 2022)

    What’s Changed

    :rocket: Features

    • Add GLUE Trainer (#2) @monologg
    • Add Template & EncT5 model and tokenizer (#1) @monologg

    :pencil: Documentation

    • Add readme & script (#3) @monologg
    Source code(tar.gz)
    Source code(zip)
Owner
Jangwon Park
Jangwon Park
Deep Learning Based Fasion Recommendation System for Ecommerce

Project Name: Fasion Recommendation System for Ecommerce A Deep learning based streamlit web app which can recommened you various types of fasion prod

BAPPY AHMED 13 Dec 13, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
天勤量化开发包, 期货量化, 实时行情/历史数据/实盘交易

TqSdk 天勤量化交易策略程序开发包 TqSdk 是一个由信易科技发起并贡献主要代码的开源 python 库. 依托快期多年积累成熟的交易及行情服务器体系, TqSdk 支持用户使用极少的代码量构建各种类型的量化交易策略程序, 并提供包含期货、期权、股票的 历史数据-实时数据-开发调试-策略回测-

信易科技 2.8k Dec 30, 2022
Semantic Segmentation of images using PixelLib with help of Pascalvoc dataset trained with Deeplabv3+ framework.

CARscan- Approach 1 - Segmentation of images by detecting contours. It failed because in images with elements along with cars were also getting detect

Padmanabha Banerjee 5 Jul 29, 2021
Multi-Stage Episodic Control for Strategic Exploration in Text Games

XTX: eXploit - Then - eXplore Requirements First clone this repo using git clone https://github.com/princeton-nlp/XTX.git Please create two conda envi

Princeton Natural Language Processing 9 May 24, 2022
Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Aviv Gabbay 41 Nov 29, 2022
Reaction SMILES-AA mapping via language modelling

rxn-aa-mapper Reactions SMILES-AA sequence mapping setup conda env create -f conda.yml conda activate rxn_aa_mapper In the following we consider on ex

16 Dec 13, 2022
Repository for the COLING 2020 paper "Explainable Automated Fact-Checking: A Survey."

Explainable Fact Checking: A Survey This repository and the accompanying webpage contain resources for the paper "Explainable Fact Checking: A Survey"

Neema Kotonya 42 Nov 17, 2022
Base pretrained models and datasets in pytorch (MNIST, SVHN, CIFAR10, CIFAR100, STL10, AlexNet, VGG16, VGG19, ResNet, Inception, SqueezeNet)

This is a playground for pytorch beginners, which contains predefined models on popular dataset. Currently we support mnist, svhn cifar10, cifar100 st

Aaron Chen 2.4k Dec 28, 2022
Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Utkarsh Agiwal 1 Feb 03, 2022
Rendering color and depth images for ShapeNet models.

Color & Depth Renderer for ShapeNet This library includes the tools for rendering multi-view color and depth images of ShapeNet models. Physically bas

Yinyu Nie 41 Dec 19, 2022
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning By Zhenda Xie*, Yutong Lin*, Zheng Zhang, Yue Ca

Zhenda Xie 293 Dec 20, 2022
Point cloud processing tool library.

Point Cloud ToolBox This point cloud processing tool library can be used to process point clouds, 3d meshes, and voxels. Environment python 3.7.5 Dep

ZhangXinyun 40 Dec 09, 2022
Google Recaptcha solver.

byerecaptcha - Google Recaptcha solver. Model and some codes takes from embium's repository -Installation- pip install byerecaptcha -How to use- from

Vladislav Zenkevich 21 Dec 19, 2022
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022
nanodet_plus,yolov5_v6.0

OAK_Detection OAK设备上适配nanodet_plus,yolov5_v6.0 Environment pytorch = 1.7.0

炼丹去了 1 Feb 18, 2022
Character Grounding and Re-Identification in Story of Videos and Text Descriptions

Character in Story Identification Network (CiSIN) This project hosts the code for our paper. Youngjae Yu, Jongseok Kim, Heeseung Yun, Jiwan Chung and

8 Dec 09, 2022
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance

Models for natural language understanding (NLU) tasks often rely on the idiosyncratic biases of the dataset, which make them brittle against test cases outside the training distribution.

Ubiquitous Knowledge Processing Lab 22 Jan 02, 2023
Hashformers is a framework for hashtag segmentation with transformers.

Hashtag segmentation is the task of automatically inserting the missing spaces between the words in a hashtag. Hashformers applies Transformer models

Ruan Chaves 41 Nov 09, 2022