Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

Related tags

Deep LearningxTune
Overview

xTune

Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

Environment

DockerFile: dancingsoul/pytorch:xTune

Install the fine-tuning code: pip install --user .

Data & Model Preparation

XTREME Datasets

  1. Create a download folder with mkdir -p download in the root of this project.
  2. manually download panx_dataset (for NER) [here][2], (note that it will download as AmazonPhotos.zip) to the download directory.
  3. run the following command to download the remaining datasets: bash scripts/download_data.sh The code of downloading dataset from XTREME is from [xtreme offical repo][1].

Note that we keep the labels in test set for easier evaluation. To prevent accidental evaluation on the test sets while running experiments, the code of [xtreme offical repo][1] removes labels of the test data during pre-processing and changes the order of the test sentences for cross-lingual sentence retrieval. Replace csv.writer(fout, delimiter='\t') with csv.writer(fout, delimiter='\t', quoting=csv.QUOTE_NONE, quotechar='') in utils_process.py if using XTREME official repo.

Translations

XTREME provides translations for SQuAD v1.1 (only train and dev), MLQA, PAWS-X, TyDiQA-GoldP, XNLI, and XQuAD, which can be downloaded from [here][3]. The xtreme_translations folder should be moved to the download directory.

The target language translations for panx and udpos are obtained with Google Translate, since they are not provided. Our processed version can be downloaded from [here][4]. It should be merged with the above xtreme_translations folder.

Bi-lingual dictionaries

We obtain the bi-lingual dictionaries from the [MUSE][6] repo. For convenience, you can download them from [here][7] and move it to the download directory, i.e., ./download/dicts.

Models

XLM-Roberta is supported. We utilize the [huggingface][5] format, which can be downloaded with bash scripts/download_model.sh.

Fine-tuning Usage

Our default settings were using Nvidia V100-32GB GPU cards. If there were out-of-memory errors, you can reduce per_gpu_train_batch_size while increasing gradient_accumulation_steps, or use multi-GPU training.

xTune consists of a two-stage training process.

  • Stage 1: fine-tuning with example consistency on the English training set.
  • Stage 2: fine-tuning with example consistency on the augmented training set and regularize model consistency with the model from Stage 1.

It's recommended to use both Stage 1 and Stage 2 for token-level tasks, such as sequential labeling, and question answering. For text classification, you can only use Stage 1 if the computation budget was limited.

bash ./scripts/train.sh [setting] [dataset] [model] [stage] [gpu] [data_dir] [output_dir]

where the options are described as follows:

  • [setting]: translate-train-all (using input translation for the languages other than English) or cross-lingual-transfer (only using English for zero-shot cross-lingual transfer)
  • [dataset]: dataset names in XTREME, i.e., xnli, panx, pawsx, udpos, mlqa, tydiqa, xquad
  • [model]: xlm-roberta-base, xlm-roberta-large
  • [stage]: 1 (first stage), 2 (second stage)
  • [gpu]: used to set environment variable CUDA_VISIBLE_DEVICES
  • [data_dir]: folder of training data
  • [output_dir]: folder of fine-tuning output

Examples: XTREME Tasks

XNLI fine-tuning on English training set and translated training sets (translate-train-all)

# run stage 1 of xTune
bash ./scripts/train.sh translate-train-all xnli xlm-roberta-base 1
# run stage 2 of xTune (optional)
bash ./scripts/train.sh translate-train-all xnli xlm-roberta-base 2

XNLI fine-tuning on English training set (cross-lingual-transfer)

# run stage 1 of xTune
bash ./scripts/train.sh cross-lingual-transfer xnli xlm-roberta-base 1
# run stage 2 of xTune (optional)
bash ./scripts/train.sh cross-lingual-transfer xnli xlm-roberta-base 2

Paper

Please cite our paper \cite{bo2021xtune} if you found the resources in the repository useful.

@inproceedings{bo2021xtune,
author = {Bo Zheng, Li Dong, Shaohan Huang, Wenhui Wang, Zewen Chi, Saksham Singhal, Wanxiang Che, Ting Liu, Xia Song, Furu Wei},
booktitle = {Proceedings of ACL 2021},
title = {{Consistency Regularization for Cross-Lingual Fine-Tuning}},
year = {2021}
}

Reference

  1. https://github.com/google-research/xtreme
  2. https://www.amazon.com/clouddrive/share/d3KGCRCIYwhKJF0H3eWA26hjg2ZCRhjpEQtDL70FSBN?_encoding=UTF8&%2AVersion%2A=1&%2Aentries%2A=0&mgh=1
  3. https://console.cloud.google.com/storage/browser/xtreme_translations
  4. https://drive.google.com/drive/folders/1Rdbc0Us_4I5MpRCwLASxBwqSW8_dlF87?usp=sharing
  5. https://github.com/huggingface/transformers/
  6. https://github.com/facebookresearch/MUSE
  7. https://drive.google.com/drive/folders/1k9rQinwUXicglA5oyzo9xtgqiuUVDkjT?usp=sharing
Owner
Bo Zheng
Bo Zheng
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
Code for paper: "Spinning Language Models for Propaganda-As-A-Service"

Spinning Language Models for Propaganda-As-A-Service This is the source code for the Arxiv version of the paper. You can use this Google Colab to expl

Eugene Bagdasaryan 16 Jan 03, 2023
Emotion classification of online comments based on RNN

emotion_classification Emotion classification of online comments based on RNN, the accuracy of the model in the test set reaches 99% data: Large Movie

1 Nov 23, 2021
Analyzes your GitHub Profile and presents you with a report on how likely you are to become the next MLH Fellow!

Fellowship Prediction GitHub Profile Comparative Analysis Tool Built with BentoML Table of Contents: Features Disclaimer Technologies Used Contributin

Damir Temir 51 Dec 29, 2022
A booklet on machine learning systems design with exercises

Machine Learning Systems Design Read this booklet here. This booklet covers four main steps of designing a machine learning system: Project setup Data

Chip Huyen 7.6k Jan 08, 2023
Course about deep learning for computer vision and graphics co-developed by YSDA and Skoltech.

Deep Vision and Graphics This repo supplements course "Deep Vision and Graphics" taught at YSDA @fall'21. The course is the successor of "Deep Learnin

Yandex School of Data Analysis 160 Jan 02, 2023
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
Bringing Characters to Life with Computer Brains in Unity

AI4Animation: Deep Learning for Character Control This project explores the opportunities of deep learning for character animation and control as part

Sebastian Starke 5.5k Jan 04, 2023
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
[NeurIPS 2021] Official implementation of paper "Learning to Simulate Self-driven Particles System with Coordinated Policy Optimization".

Code for Coordinated Policy Optimization Webpage | Code | Paper | Talk (English) | Talk (Chinese) Hi there! This is the source code of the paper “Lear

DeciForce: Crossroads of Machine Perception and Autonomy 81 Dec 19, 2022
Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Datasets"

Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Data

2 Oct 06, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!

Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks

Amirabbas Asadi 10 Dec 17, 2022
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023
AdelaiDepth is an open source toolbox for monocular depth prediction.

AdelaiDepth is an open source toolbox for monocular depth prediction.

Adelaide Intelligent Machines (AIM) Group 743 Jan 01, 2023
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022
Deep Learning and Logical Reasoning from Data and Knowledge

Logic Tensor Networks (LTN) Logic Tensor Network (LTN) is a neurosymbolic framework that supports querying, learning and reasoning with both rich data

171 Dec 29, 2022
Unofficial Implementation of MLP-Mixer in TensorFlow

mlp-mixer-tf Unofficial Implementation of MLP-Mixer [abs, pdf] in TensorFlow. Note: This project may have some bugs in it. I'm still learning how to i

Rishabh Anand 24 Mar 23, 2022
Provably Rare Gem Miner.

Provably Rare Gem Miner just another random project by yoyoismee.eth useful link main site market contract useful thing you should know read contract

34 Nov 22, 2022