This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Overview

Feedback Prize - Evaluating Student Writing

This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The competition can be found here: https://www.kaggle.com/competitions/feedback-prize-2021/

Datasets required

Use this command to convert roberta-large to LSG

$ python convert_roberta_checkpoint.py \
                        --initial_model roberta-large \
                        --model_name lsg-roberta-large \
                        --max_sequence_length 1536

Follow following instructions to manually add fast tokenizer to transformer library:

# The following is necessary if you want to use the fast tokenizer for deberta v2 or v3
# This must be done before importing transformers
import shutil
from pathlib import Path

# Path to installed transformer library
transformers_path = Path("/opt/conda/lib/python3.7/site-packages/transformers")

input_dir = Path("../input/deberta-v2-3-fast-tokenizer")

convert_file = input_dir / "convert_slow_tokenizer.py"
conversion_path = transformers_path/convert_file.name

if conversion_path.exists():
    conversion_path.unlink()

shutil.copy(convert_file, transformers_path)
deberta_v2_path = transformers_path / "models" / "deberta_v2"

for filename in ['tokenization_deberta_v2.py', 'tokenization_deberta_v2_fast.py']:
    filepath = deberta_v2_path/filename
    if filepath.exists():
        filepath.unlink()

    shutil.copy(input_dir/filename, filepath)

After this ../input directory should look something like this.

.
├── input
│   ├── feedback-prize-2021
│   │   ├── train/
│   │   ├── test/
│   │   ├── sample_submission.csv
│   │   └── train.csv
│   ├── lsg-roberta-large
│   │   ├── config.json
│   │   ├── merges.txt
│   │   ├── modeling.py
│   │   ├── pytorch_model.bin
│   │   ├── special_tokens_map.json
│   │   ├── tokenizer.json
│   │   ├── tokenizer_config.json
│   │   └── vocab.json
│   ├── deberta-v2-3-fast-tokenizer
│   │   ├── convert_slow_tokenizer.py
│   │   ├── deberta__init__.py
│   │   ├── tokenization_auto.py
│   │   ├── tokenization_deberta_v2.py
│   │   ├── tokenization_deberta_v2_fast.py
│   │   └── transformers__init__.py
│   └── feedbackgroupshufflesplit1337
│       └── groupshufflesplit_1337.p

or you can change the DATA_BASE_DIR in SETTINGS.json to download the files in your desired location.

Models and Training

  • Deberta large, Deberta xlarge, Deberta v2 xlarge, Deberta v3 large, Funnel transformer large and BigBird are trained using trainer.py

Example:

$ python trainer.py --fold 0 --pretrained_model google/bigbird-roberta-large

where pretrained_model can be microsoft/deberta-large, microsoft/deberta-xlarge, microsoft/deberta-v2-xlarge, microsoft/deberta-v3-large, funnel-transformer/large or google/bigbird-roberta-large

  • Deberta large with LSTM head and jaccard loss is trained using debertabilstm_trainer.py

Example:

$ python debertabilstm_trainer.py --fold 0
  • Longformer large with LSTM head is trained using longformerwithbilstm_trainer.py

Example:

$ python longformerwithbilstm_trainer.py --fold 0
  • LSG Roberta is trained with lsgroberta_trainer.py

Example:

$ python lsgroberta_trainer.py --fold 0
  • YOSO is trained with yoso_trainer.py

Example:

$ python yoso_trainer.py --fold 0

Inference

After training all the models, the outputs were pushed to Kaggle Datasets.

And the final inference kernel can be found here: https://www.kaggle.com/code/cdeotte/2nd-place-solution-cv741-public727-private740?scriptVersionId=90301836

Solution writeup: https://www.kaggle.com/competitions/feedback-prize-2021/discussion/313389

Owner
Udbhav Bamba
Deep Learning || Computer Vision || Machine Learning
Udbhav Bamba
CrossMLP - The repository offers the official implementation of our BMVC 2021 paper (oral) in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Data Preparation, Processing, and Visualization for MoVi Data

MoVi-Toolbox Data Preparation, Processing, and Visualization for MoVi Data, https://www.biomotionlab.ca/movi/ MoVi is a large multipurpose dataset of

Saeed Ghorbani 51 Nov 27, 2022
Pytorch implementation of the paper "Class-Balanced Loss Based on Effective Number of Samples"

Class-balanced-loss-pytorch Pytorch implementation of the paper Class-Balanced Loss Based on Effective Number of Samples presented at CVPR'19. Yin Cui

Vandit Jain 697 Dec 29, 2022
PushForKiCad - AISLER Push for KiCad EDA

AISLER Push for KiCad Push your layout to AISLER with just one click for instant

AISLER 31 Dec 29, 2022
A higher performance pytorch implementation of DeepLab V3 Plus(DeepLab v3+)

A Higher Performance Pytorch Implementation of DeepLab V3 Plus Introduction This repo is an (re-)implementation of Encoder-Decoder with Atrous Separab

linhua 326 Nov 22, 2022
Simplified interface for TensorFlow (mimicking Scikit Learn) for Deep Learning

SkFlow has been moved to Tensorflow. SkFlow has been moved to http://github.com/tensorflow/tensorflow into contrib folder specifically located here. T

3.2k Dec 29, 2022
SLAMP: Stochastic Latent Appearance and Motion Prediction

SLAMP: Stochastic Latent Appearance and Motion Prediction Official implementation of the paper SLAMP: Stochastic Latent Appearance and Motion Predicti

Kaan Akan 34 Dec 08, 2022
A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.

IllustrationGAN A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations. Generated Images

268 Nov 27, 2022
Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).

Deep Text Search - AI Based Text Search & Recommendation System Deep Text Search is an AI-powered multilingual text search and recommendation engine w

19 Sep 29, 2022
PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021.

GCResNet PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021. The code will

11 May 19, 2022
PyTorch implementation of DeepUME: Learning the Universal Manifold Embedding for Robust Point Cloud Registration (BMVC 2021)

DeepUME: Learning the Universal Manifold Embedding for Robust Point Cloud Registration [video] [paper] [supplementary] [data] [thesis] Introduction De

Natalie Lang 10 Dec 14, 2022
The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational Autoencoders".

Open-KG-canonicalization The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational

International Business Machines 13 Nov 11, 2022
Assginment for UofT CSC420: Intro to Image Understanding

Run the code Open edge_detection.ipynb in google colab. Upload image1.jpg,image2.jpg and my_image.jpg to '/content/drive/My Drive'. chooose 'Run all'

Ziyi-Zhou 1 Feb 24, 2022
Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models

Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models. You can easily generate all kind of art from drawing, painting, sketch, or even a specific artist style just using a t

Muhammad Fathy Rashad 643 Dec 30, 2022
List of content farm sites like g.penzai.com.

内容农场网站清单 Google 中文搜索结果包含了相当一部分的内容农场式条目,比如「小 X 知识网」「小 X 百科网」。此种链接常会 302 重定向其主站,页面内容为自动生成,大量堆叠关键字,揉杂一些爬取到的内容,完全不具可读性和参考价值。 尤为过分的是,该类网站可能有成千上万个分身域名被 Goog

WDMPA 541 Jan 03, 2023
Repository for RNNs using TensorFlow and Keras - LSTM and GRU Implementation from Scratch - Simple Classification and Regression Problem using RNNs

RNN 01- RNN_Classification Simple RNN training for classification task of 3 signal: Sine, Square, Triangle. 02- RNN_Regression Simple RNN training for

Nahid Ebrahimian 13 Dec 13, 2022
Code and datasets for the paper "Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction" (RA-L, 2021)

Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction This is the code for the paper Combining E

Robotics and Perception Group 69 Dec 26, 2022
Constraint-based geometry sketcher for blender

Constraint-based sketcher addon for Blender that allows to create precise 2d shapes by defining a set of geometric constraints like tangent, distance,

1.7k Dec 31, 2022
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

AI Necromancer 299 Dec 17, 2022
Official Pytorch Implementation of Length-Adaptive Transformer (ACL 2021)

Length-Adaptive Transformer This is the official Pytorch implementation of Length-Adaptive Transformer. For detailed information about the method, ple

Clova AI Research 93 Dec 28, 2022