A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.

Overview

IllustrationGAN

A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.

Generated Images

These images were generated by the model after being trained on a custom dataset of about 20,000 anime faces that were automatically cropped from illustrations using a face detector. Generated Images

Checking for Overfitting

It is theoretically possible for the generator network to memorize training set images rather than actually generalizing and learning to produce novel images of its own. To check for this, I randomly generate images and display the "closest" images in the training set according to mean squared error. The top row is randomly generated images, the columns are the closest 5 images in the training set.

Overfitting Check

It is clear that the generator does not merely learn to copy training set images, but rather generalizes and is able to produce its own unique images.

How it Works

Generative Adversarial Networks consist of two neural networks: a discriminator and a generator. The discriminator receives both real images from the training set and generated images produced by the generator. The discriminator outputs the probability that an image is real, so it is trained to output high values for the real images and low values for the generated ones. The generator is trained to produce images that the discriminator thinks are real. Both the discriminator and generator are trainined simultaneously so that they compete against each other. As a result of this, the generator learns to produce more and more realistic images as it trains.

Model Architecture

The model is based on DCGANs, but with a few important differences:

  1. No strided convolutions. The generator uses bilinear upsampling to upscale a feature blob by a factor of 2, followed by a stride-1 convolution layer. The discriminator uses a stride-1 convolution followed by 2x2 max pooling.

  2. Minibatch discrimination. See Improved Techniques for Training GANs for more details.

  3. More fully connected layers in both the generator and discriminator. In DCGANs, both networks have only one fully connected layer.

  4. A novel regularization term applied to the generator network. Normally, increasing the number of fully connected layers in the generator beyond one triggers one of the most common failure modes when training GANs: the generator "collapses" the z-space and produces only a very small number of unique examples. In other words, very different z vectors will produce nearly the same generated image. To fix this, I add a small auxiliary z-predictor network that takes as input the output of the last fully connected layer in the generator, and predicts the value of z. In other words, it attempts to learn the inverse of whatever function the generator fully connected layers learn. The z-predictor network and generator are trained together to predict the value of z. This forces the generator fully connected layers to only learn those transformations that preserve information about z. The result is that the aformentioned collapse no longer occurs, and the generator is able to leverage the power of the additional fully connected layers.

Training the Model

Dependencies: TensorFlow, PrettyTensor, numpy, matplotlib

The custom dataset I used is too large to add to a Github repository; I am currently finding a suitable way to distribute it. Instructions for training the model will be in this readme after I make the dataset available.

PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation

deep-hist PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation PyT

Winfried Lötzsch 10 Dec 06, 2022
This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees

Mega-NeRF This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees used by the Mega-NeRF-Dynamic viewe

cmusatyalab 260 Dec 28, 2022
GLIP: Grounded Language-Image Pre-training

GLIP: Grounded Language-Image Pre-training Updates 12/06/2021: GLIP paper on arxiv https://arxiv.org/abs/2112.03857. Code and Model are under internal

Microsoft 862 Jan 01, 2023
Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction

Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction. Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe,

stanley 152 Dec 16, 2022
Pytorch implemenation of Stochastic Multi-Label Image-to-image Translation (SMIT)

SMIT: Stochastic Multi-Label Image-to-image Translation This repository provides a PyTorch implementation of SMIT. SMIT can stochastically translate a

Biomedical Computer Vision Group @ Uniandes 37 Mar 01, 2022
Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation

CorrNet This project provides the code and results for 'Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation'

Gongyang Li 13 Nov 03, 2022
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
An AFL implementation with UnTracer (our coverage-guided tracer)

UnTracer-AFL This repository contains an implementation of our prototype coverage-guided tracing framework UnTracer in the popular coverage-guided fuz

113 Dec 17, 2022
[CVPR 2021] VirTex: Learning Visual Representations from Textual Annotations

VirTex: Learning Visual Representations from Textual Annotations Karan Desai and Justin Johnson University of Michigan CVPR 2021 arxiv.org/abs/2006.06

Karan Desai 533 Dec 24, 2022
The all new way to turn your boring vector meshes into the new fad in town; Voxels!

Voxelator The all new way to turn your boring vector meshes into the new fad in town; Voxels! Notes: I have not tested this on a rotated mesh. With fu

6 Feb 03, 2022
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on

Yixuan He 9 Nov 24, 2022
A PyTorch implementation of the paper Mixup: Beyond Empirical Risk Minimization in PyTorch

Mixup: Beyond Empirical Risk Minimization in PyTorch This is an unofficial PyTorch implementation of mixup: Beyond Empirical Risk Minimization. The co

Harry Yang 121 Dec 17, 2022
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision Project | Arxiv | Abstract It is very challenging for various visual tasks such as image

CVSM Group - email: <a href=[email protected]"> 377 Jan 07, 2023
Code related to the manuscript "Averting A Crisis In Simulation-Based Inference"

Abstract We present extensive empirical evidence showing that current Bayesian simulation-based inference algorithms are inadequate for the falsificat

Montefiore Artificial Intelligence Research 3 Nov 14, 2022
Real-time analysis of intracranial neurophysiology recordings.

py_neuromodulation Click this button to run the "Tutorial ML with py_neuro" notebooks: The py_neuromodulation toolbox allows for real time capable pro

Interventional Cognitive Neuromodulation - Neumann Lab Berlin 15 Nov 03, 2022
Geometric Vector Perceptron --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Code to accompany Learning from Protein Structure with Geometric Vector Perceptrons by B Jing, S Eismann, P Suriana, RJL T

Dror Lab 85 Dec 29, 2022
GPU-accelerated Image Processing library using OpenCL

pyclesperanto pyclesperanto is a python package for clEsperanto - a multi-language framework for GPU-accelerated image processing. clEsperanto uses Op

17 Dec 25, 2022
Alfred-Restore-Iterm-Arrangement - An Alfred workflow to restore iTerm2 window Arrangements

Alfred-Restore-Iterm-Arrangement This alfred workflow will list avaliable iTerm2

7 May 10, 2022