Causal-Adversarial-Instruments - PyTorch Implementation for Developing Library of Investigating Adversarial Examples on A Causal View by Instruments

Overview

PyTorch Git

Causal-Adversarial-Instruments

Generic badge Generic badge Generic badge License: MIT

This is a PyTorch Implementation code for developing super fast adversarial training. This code is combined with below state-of-the-art technologies for accelerating adversarial attacks and defenses with Deep Neural Networks on Volta GPU architecture.

  • Distributed Data Parallel [link]
  • Channel Last Memory Format [link]
  • Mixed Precision Training [link]
  • Mixed Precision + Adversarial Attack (based on torchattacks [link])
  • Faster Adversarial Training for Large Dataset [link]
  • Fast Forward Computer Vision (FFCV) [link]

Citation

If you find this software helpful, please cite it as:

@software{Causal_AI_2022,
  author = {Byung-Kwan Lee, Junho Kim},
  title = {Causal-Adversarial-Instruments},
  url = {https://github.com/ByungKwanLee/Causal-Adversarial-Instruments},
  version = {0.1},
  year = {2022}
}

Library for Fast Adversarial Attacks

This library is developed based on the well-known package of torchattacks [link] due to its simple scalability.

Under Developement (Current Available Attacks Below)

  • Fast Gradient Sign Method (FGSM)
  • Projected Gradient Descent (PGD)

Environment Setting

Please check below settings to successfully run this code. If not, follow step by step during filling the checklist in.

  • To utilize FFCV [link], you should install it on conda virtual environment. I use python version 3.8, pytorch 1.7.1, torchvision 0.8.2, and cuda 10.1. For more different version, you can refer to PyTorch official site [link].

conda create -y -n ffcv python=3.8 cupy pkg-config compilers libjpeg-turbo opencv pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 numba -c pytorch -c conda-forge

  • Activate the created environment by conda

conda activate ffcv

  • And, it would be better to install cudnn to more accelerate GPU. (Optional)

conda install cudnn -c conda-forge

  • To install FFCV, you should download it in pip and install torchattacks [link] to run adversarial attack.

pip install ffcv torchattacks==3.1.0

  • To guarantee the execution of this code, please additionally install library in requirements.txt (matplotlib, tqdm)

pip install -r requirements.txt


Available Datasets


Available Baseline Models


How to run

After making completion of environment settings, then you can follow how to run below.


  • First, run fast_dataset_converter.py to generate dataset with .betson extension, instead of using original dataset [FFCV].
# Future import build
from __future__ import print_function

# Import built-in module
import os
import argparse

# fetch args
parser = argparse.ArgumentParser()

# parameter
parser.add_argument('--dataset', default='imagenet', type=str)
parser.add_argument('--gpu', default='0', type=str)
args = parser.parse_args()

# GPU configurations
os.environ["CUDA_VISIBLE_DEVICES"]=args.gpu

# init fast dataloader
from utils.fast_data_utils import save_data_for_beton
save_data_for_beton(dataset=args.dataset)

  • Second, run fast_pretrain_standard.py(Standard Training) or fast_pretrain_adv.py (Adversarial Training)
# model parameter
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='imagenet', type=str)
parser.add_argument('--network', default='resnet', type=str)
parser.add_argument('--depth', default=50, type=int)
parser.add_argument('--gpu', default='0,1,2,3,4', type=str)

# learning parameter
parser.add_argument('--learning_rate', default=0.1, type=float)
parser.add_argument('--weight_decay', default=0.0002, type=float)
parser.add_argument('--batch_size', default=512, type=float)
parser.add_argument('--test_batch_size', default=128, type=float)
parser.add_argument('--epoch', default=100, type=int)

or

# model parameter
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='imagenet', type=str)
parser.add_argument('--network', default='resnet', type=str)
parser.add_argument('--depth', default=18, type=int)
parser.add_argument('--gpu', default='0,1,2,3,4', type=str)

# learning parameter
parser.add_argument('--learning_rate', default=0.1, type=float)
parser.add_argument('--weight_decay', default=0.0002, type=float)
parser.add_argument('--batch_size', default=1024, type=float)
parser.add_argument('--test_batch_size', default=512, type=float)
parser.add_argument('--epoch', default=60, type=int)

# attack parameter
parser.add_argument('--attack', default='pgd', type=str)
parser.add_argument('--eps', default=0.03, type=float)
parser.add_argument('--steps', default=10, type=int)

Owner
LBK
Ph.D Candidate, KAIST EE
LBK
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Zhuo Zhang 164 Dec 05, 2022
Implementation of SegNet: A Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-Wise Labelling

Caffe SegNet This is a modified version of Caffe which supports the SegNet architecture As described in SegNet: A Deep Convolutional Encoder-Decoder A

Alex Kendall 1.1k Jan 02, 2023
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
Human Pose estimation with TensorFlow framework

Human Pose Estimation with TensorFlow Here you can find the implementation of the Human Body Pose Estimation algorithm, presented in the DeeperCut and

Eldar Insafutdinov 1.1k Dec 29, 2022
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Phil Wang 209 Dec 28, 2022
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity

[ICLR 2022] Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity by Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elen

VITA 18 Dec 31, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation (NeurIPS2021 Benchmark and Dataset Track)

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Kingdrone 174 Dec 22, 2022
Interactive Image Segmentation via Backpropagating Refinement Scheme

Won-Dong Jang and Chang-Su Kim, Interactive Image Segmentation via Backpropagating Refinement Scheme, CVPR 2019

Won-Dong Jang 85 Sep 15, 2022
MutualGuide is a compact object detector specially designed for embedded devices

Introduction MutualGuide is a compact object detector specially designed for embedded devices. Comparing to existing detectors, this repo contains two

ZHANG Heng 103 Dec 13, 2022
Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process

Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process, a complete algorithm library is esta

Fu Pengyou 50 Jan 07, 2023
Code repository for Self-supervised Structure-sensitive Learning, CVPR'17

Self-supervised Structure-sensitive Learning (SSL) Ke Gong, Xiaodan Liang, Xiaohui Shen, Liang Lin, "Look into Person: Self-supervised Structure-sensi

Clay Gong 219 Dec 29, 2022
A semantic segmentation toolbox based on PyTorch

Introduction vedaseg is an open source semantic segmentation toolbox based on PyTorch. Features Modular Design We decompose the semantic segmentation

407 Dec 15, 2022
Source code for our EMNLP'21 paper 《Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning》

Child-Tuning Source code for EMNLP 2021 Long paper: Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning. 1. Environ

46 Dec 12, 2022
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks)

A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks) This repository contains a PyTorch implementation for the paper: Deep Pyra

Greg Dongyoon Han 262 Jan 03, 2023
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
Bringing sanity to world of messed-up data

Sanitize sanitize is a Python module for making sure various things (e.g. HTML) are safe to use. It was originally written by Mark Pilgrim and is dist

Alireza Savand 63 Oct 26, 2021
Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption

SG-GAN TensorFlow implementation of SG-GAN. Prerequisites TensorFlow (implemented in v1.3) numpy scipy pillow Getting Started Train Prepare dataset. W

lplcor 61 Jun 07, 2022