Causal-Adversarial-Instruments - PyTorch Implementation for Developing Library of Investigating Adversarial Examples on A Causal View by Instruments

Overview

PyTorch Git

Causal-Adversarial-Instruments

Generic badge Generic badge Generic badge License: MIT

This is a PyTorch Implementation code for developing super fast adversarial training. This code is combined with below state-of-the-art technologies for accelerating adversarial attacks and defenses with Deep Neural Networks on Volta GPU architecture.

  • Distributed Data Parallel [link]
  • Channel Last Memory Format [link]
  • Mixed Precision Training [link]
  • Mixed Precision + Adversarial Attack (based on torchattacks [link])
  • Faster Adversarial Training for Large Dataset [link]
  • Fast Forward Computer Vision (FFCV) [link]

Citation

If you find this software helpful, please cite it as:

@software{Causal_AI_2022,
  author = {Byung-Kwan Lee, Junho Kim},
  title = {Causal-Adversarial-Instruments},
  url = {https://github.com/ByungKwanLee/Causal-Adversarial-Instruments},
  version = {0.1},
  year = {2022}
}

Library for Fast Adversarial Attacks

This library is developed based on the well-known package of torchattacks [link] due to its simple scalability.

Under Developement (Current Available Attacks Below)

  • Fast Gradient Sign Method (FGSM)
  • Projected Gradient Descent (PGD)

Environment Setting

Please check below settings to successfully run this code. If not, follow step by step during filling the checklist in.

  • To utilize FFCV [link], you should install it on conda virtual environment. I use python version 3.8, pytorch 1.7.1, torchvision 0.8.2, and cuda 10.1. For more different version, you can refer to PyTorch official site [link].

conda create -y -n ffcv python=3.8 cupy pkg-config compilers libjpeg-turbo opencv pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 numba -c pytorch -c conda-forge

  • Activate the created environment by conda

conda activate ffcv

  • And, it would be better to install cudnn to more accelerate GPU. (Optional)

conda install cudnn -c conda-forge

  • To install FFCV, you should download it in pip and install torchattacks [link] to run adversarial attack.

pip install ffcv torchattacks==3.1.0

  • To guarantee the execution of this code, please additionally install library in requirements.txt (matplotlib, tqdm)

pip install -r requirements.txt


Available Datasets


Available Baseline Models


How to run

After making completion of environment settings, then you can follow how to run below.


  • First, run fast_dataset_converter.py to generate dataset with .betson extension, instead of using original dataset [FFCV].
# Future import build
from __future__ import print_function

# Import built-in module
import os
import argparse

# fetch args
parser = argparse.ArgumentParser()

# parameter
parser.add_argument('--dataset', default='imagenet', type=str)
parser.add_argument('--gpu', default='0', type=str)
args = parser.parse_args()

# GPU configurations
os.environ["CUDA_VISIBLE_DEVICES"]=args.gpu

# init fast dataloader
from utils.fast_data_utils import save_data_for_beton
save_data_for_beton(dataset=args.dataset)

  • Second, run fast_pretrain_standard.py(Standard Training) or fast_pretrain_adv.py (Adversarial Training)
# model parameter
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='imagenet', type=str)
parser.add_argument('--network', default='resnet', type=str)
parser.add_argument('--depth', default=50, type=int)
parser.add_argument('--gpu', default='0,1,2,3,4', type=str)

# learning parameter
parser.add_argument('--learning_rate', default=0.1, type=float)
parser.add_argument('--weight_decay', default=0.0002, type=float)
parser.add_argument('--batch_size', default=512, type=float)
parser.add_argument('--test_batch_size', default=128, type=float)
parser.add_argument('--epoch', default=100, type=int)

or

# model parameter
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='imagenet', type=str)
parser.add_argument('--network', default='resnet', type=str)
parser.add_argument('--depth', default=18, type=int)
parser.add_argument('--gpu', default='0,1,2,3,4', type=str)

# learning parameter
parser.add_argument('--learning_rate', default=0.1, type=float)
parser.add_argument('--weight_decay', default=0.0002, type=float)
parser.add_argument('--batch_size', default=1024, type=float)
parser.add_argument('--test_batch_size', default=512, type=float)
parser.add_argument('--epoch', default=60, type=int)

# attack parameter
parser.add_argument('--attack', default='pgd', type=str)
parser.add_argument('--eps', default=0.03, type=float)
parser.add_argument('--steps', default=10, type=int)

Owner
LBK
Ph.D Candidate, KAIST EE
LBK
Lowest memory consumption and second shortest runtime in NTIRE 2022 challenge on Efficient Super-Resolution

FMEN Lowest memory consumption and second shortest runtime in NTIRE 2022 on Efficient Super-Resolution. Our paper: Fast and Memory-Efficient Network T

33 Dec 01, 2022
Instance-wise Occlusion and Depth Orders in Natural Scenes (CVPR 2022)

Instance-wise Occlusion and Depth Orders in Natural Scenes Official source code. Appears at CVPR 2022 This repository provides a new dataset, named In

27 Dec 27, 2022
Python library for loading and using triangular meshes.

Trimesh is a pure Python (2.7-3.4+) library for loading and using triangular meshes with an emphasis on watertight surfaces. The goal of the library i

Michael Dawson-Haggerty 2.2k Jan 07, 2023
Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch

Enformer - Pytorch (wip) Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch. The original tensorflow

Phil Wang 235 Dec 27, 2022
A generalized framework for prototyping full-stack cooperative driving automation applications under CARLA+SUMO.

OpenCDA OpenCDA is a SIMULATION tool integrated with a prototype cooperative driving automation (CDA; see SAE J3216) pipeline as well as regular autom

UCLA Mobility Lab 726 Dec 29, 2022
Video-based open-world segmentation

UVO_Challenge Team Alpes_runner Solutions This is an official repo for our UVO Challenge solutions for Image/Video-based open-world segmentation. Our

Yuming Du 84 Dec 22, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
(Arxiv 2021) NeRF--: Neural Radiance Fields Without Known Camera Parameters

NeRF--: Neural Radiance Fields Without Known Camera Parameters Project Page | Arxiv | Colab Notebook | Data Zirui Wang¹, Shangzhe Wu², Weidi Xie², Min

Active Vision Laboratory 411 Dec 26, 2022
This repository is the official implementation of Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models

Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models Link to paper Abstract We study prediction of future out

Rickard Karlsson 2 Aug 19, 2022
Unofficial PyTorch implementation of the Adaptive Convolution architecture for image style transfer

AdaConv Unofficial PyTorch implementation of the Adaptive Convolution architecture for image style transfer from "Adaptive Convolutions for Structure-

65 Dec 22, 2022
Implementation of Feedback Transformer in Pytorch

Feedback Transformer - Pytorch Simple implementation of Feedback Transformer in Pytorch. They improve on Transformer-XL by having each token have acce

Phil Wang 93 Oct 04, 2022
PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules

Dynamic Routing Between Capsules - PyTorch implementation PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules from Sara Sabour,

Adam Bielski 475 Dec 24, 2022
Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).

[PDF] | [Slides] The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk) Installation Inst

MilaGraph 117 Dec 09, 2022
Back to Basics: Efficient Network Compression via IMP

Back to Basics: Efficient Network Compression via IMP Authors: Max Zimmer, Christoph Spiegel, Sebastian Pokutta This repository contains the code to r

IOL Lab @ ZIB 1 Nov 19, 2021
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
✨✨✨An awesome open source toolbox for stereo matching.

OpenStereo This is an awesome open source toolbox for stereo matching. Supported Methods: BM SGM(T-PAMI'07) GCNet(ICCV'17) PSMNet(CVPR'18) StereoNet(E

Wang Qingyu 6 Nov 04, 2022
Local Multi-Head Channel Self-Attention for FER2013

LHC-Net Local Multi-Head Channel Self-Attention This repository is intended to provide a quick implementation of the LHC-Net and to replicate the resu

12 Jan 04, 2023
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w

Julia Gusak 25 Aug 12, 2021
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context Code in both PyTorch and TensorFlow

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper

Zhilin Yang 3.3k Jan 06, 2023
UFPR-ADMR-v2 Dataset

UFPR-ADMR-v2 Dataset The UFPR-ADMRv2 dataset contains 5,000 dial meter images obtained on-site by employees of the Energy Company of Paraná (Copel), w

Gabriel Salomon 8 Sep 29, 2022