Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision

Overview

MLP Mixer

Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision. Give us a star if you like this repo.

Author:

This library belongs to our project: Papers-Videos-Code where we will implement AI SOTA papers and publish all source code. Additionally, videos to explain these models will be uploaded to ProtonX Youtube channels.

image

[Note] You can use your data to train this model.

I. Set up environment

  1. Make sure you have installed Miniconda. If not yet, see the setup document here.

  2. cd into mlp-mixer and use command line conda env create -f environment.yml to setup the environment

  3. Run conda environment using the command conda activate mlp-mixer

II. Set up your dataset.

Create 2 folders train and validation in the data folder (which was created already). Then Please copy your images with the corresponding names into these folders.

  • train folder was used for the training process
  • validation folder was used for validating training result after each epoch

This library use image_dataset_from_directory API from Tensorflow 2.0 to load images. Make sure you have some understanding of how it works via its document.

Structure of these folders.

train/
...class_a/
......a_image_1.jpg
......a_image_2.jpg
...class_b/
......b_image_1.jpg
......b_image_2.jpg
...class_c/
......c_image_1.jpg
......c_image_2.jpg
validation/
...class_a/
......a_image_1.jpg
......a_image_2.jpg
...class_b/
......b_image_1.jpg
......b_image_2.jpg
...class_c/
......c_image_1.jpg
......c_image_2.jpg

III. Train your model by running this command line

python train.py --epochs ${epochs} --num-classes ${num_classes}

You want to train a model in 10 epochs for binary classification problems (with 2 classes)

Example:

python train.py --epochs 10 --num-classes 2

There are some important arguments for the script you should consider when running it:

  • train-folder: The folder of training images
  • valid-folder: The folder of validation images
  • model-folder: Where the model after training saved
  • num-classes: The number of your problem classes.
  • batch-size: The batch size of the dataset
  • c: Patch Projection Dimension
  • dc: Token-mixing units. It was mentioned in the paper on page 3
  • ds: Channel-mixing units. It was mentioned in the paper on page 3
  • num-of-mlp-blocks: The number of MLP Blocks
  • learning-rate: The learning rate of Adam Optimizer

After training successfully, your model will be saved to model-folder defined before

IV. Testing model with a new image

We offer a script for testing a model using a new image via a command line:

python predict.py --test-file-path ${test_file_path}

where test_file_path is the path of your test image.

Example:

python predict.py --test-file-path ./data/test/cat.2000.jpg

V. Feedback

If you meet any issues when using this library, please let us know via the issues submission tab.

Owner
Ngoc Nguyen Ba
ProtonX Founder, VietAI Hanoi Founder.
Ngoc Nguyen Ba
HNECV: Heterogeneous Network Embedding via Cloud model and Variational inference

HNECV This repository provides a reference implementation of HNECV as described in the paper: HNECV: Heterogeneous Network Embedding via Cloud model a

4 Jun 28, 2022
Activity tragle - Google is tracking everything, we just look at it

activity_tragle Google is tracking everything, we just look at it here. You need

BERNARD Guillaume 1 Feb 15, 2022
Learning Modified Indicator Functions for Surface Reconstruction

Learning Modified Indicator Functions for Surface Reconstruction In this work, we propose a learning-based approach for implicit surface reconstructio

4 Apr 18, 2022
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
Turning SymPy expressions into JAX functions

sympy2jax Turn SymPy expressions into parametrized, differentiable, vectorizable, JAX functions. All SymPy floats become trainable input parameters. S

Miles Cranmer 38 Dec 11, 2022
Neural network pruning for finding a sparse computational model for controlling a biological motor task.

MothPruning Scientific Overview Originally inspired by biological nervous systems, deep neural networks (DNNs) are powerful computational tools for mo

Olivia Thomas 0 Dec 14, 2022
Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

111 Dec 29, 2022
A program that uses computer vision to detect hand gestures, used for controlling movie players.

HandGestureDetection This program uses a Haar Cascade algorithm to detect the presence of your hand, and then passes it on to a self-created and self-

2 Nov 22, 2022
A implemetation of the LRCN in mxnet

A implemetation of the LRCN in mxnet ##Abstract LRCN is a combination of CNN and RNN ##Installation Download UCF101 dataset ./avi2jpg.sh to split the

44 Aug 25, 2022
Simulation of moving particles under microscopic imaging

Simulation of moving particles under microscopic imaging Install scipy numpy scikit-image tiffile Run python simulation.py Read result https://imagej

Zehao Wang 2 Dec 14, 2021
Just-Now - This Is Just Now Login Friendlist Cloner Tools

JUST NOW LOGIN FRIENDLIST CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 21 Mar 09, 2022
A baseline code for VSPW

A baseline code for VSPW Preparation Download VSPW dataset The VSPW dataset with extracted frames and masks is available here.

28 Aug 22, 2022
Image Fusion Transformer

Image-Fusion-Transformer Platform Python 3.7 Pytorch =1.0 Training Dataset MS-COCO 2014 (T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ram

Vibashan VS 68 Dec 23, 2022
Official implementation for the paper: Permutation Invariant Graph Generation via Score-Based Generative Modeling

Permutation Invariant Graph Generation via Score-Based Generative Modeling This repo contains the official implementation for the paper Permutation In

64 Dec 29, 2022
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
StyleGAN2 with adaptive discriminator augmentation (ADA) - Official TensorFlow implementation

StyleGAN2 with adaptive discriminator augmentation (ADA) — Official TensorFlow implementation Training Generative Adversarial Networks with Limited Da

NVIDIA Research Projects 1.7k Dec 29, 2022
This repo contains the source code and a benchmark for predicting user's utilities with Machine Learning techniques for Computational Persuasion

Machine Learning for Argument-Based Computational Persuasion This repo contains the source code and a benchmark for predicting user's utilities with M

Ivan Donadello 4 Nov 07, 2022
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
Pytorch Implementation of Various Point Transformers

Pytorch Implementation of Various Point Transformers Recently, various methods applied transformers to point clouds: PCT: Point Cloud Transformer (Men

Neil You 434 Dec 30, 2022