The Unsupervised Reinforcement Learning Benchmark (URLB)

Overview

The Unsupervised Reinforcement Learning Benchmark (URLB)

URLB provides a set of leading algorithms for unsupervised reinforcement learning where agents first pre-train without access to extrinsic rewards and then are finetuned to downstream tasks.

Requirements

We assume you have access to a GPU that can run CUDA 10.2 and CUDNN 8. Then, the simplest way to install all required dependencies is to create an anaconda environment by running

conda env create -f conda_env.yml

After the instalation ends you can activate your environment with

conda activate urlb

Implemented Agents

Agent Command Implementation Author(s) Paper
ICM agent=icm Denis paper
ProtoRL agent=proto Denis paper
DIAYN agent=diayn Misha paper
APT(ICM) agent=icm_apt Hao, Kimin paper
APT(Ind) agent=ind_apt Hao, Kimin paper
APS agent=aps Hao, Kimin paper
SMM agent=smm Albert paper
RND agent=rnd Kevin paper
Disagreement agent=disagreement Catherine paper

Available Domains

We support the following domains.

Domain Tasks
walker stand, walk, run, flip
quadruped walk, run, stand, jump
jaco reach_top_left, reach_top_right, reach_bottom_left, reach_bottom_right

Domain observation mode

Each domain supports two observation modes: states and pixels.

Model Command
states obs_type=states
pixels obs_type=pixels

Instructions

Pre-training

To run pre-training use the pretrain.py script

python pretrain.py agent=icm domain=walker

or, if you want to train a skill-based agent, like DIAYN, run:

python pretrain.py agent=diayn domain=walker

This script will produce several agent snapshots after training for 100k, 500k, 1M, and 2M frames. The snapshots will be stored under the following directory:

./pretrained_models/<obs_type>/<domain>/<agent>/

For example:

./pretrained_models/states/walker/icm/

Fine-tuning

Once you have pre-trained your method, you can use the saved snapshots to initialize the DDPG agent and fine-tune it on a downstream task. For example, let's say you have pre-trained ICM, you can fine-tune it on walker_run by running the following command:

python finetune.py pretrained_agent=icm task=walker_run snapshot_ts=1000000 obs_type=states

This will load a snapshot stored in ./pretrained_models/states/walker/icm/snapshot_1000000.pt, initialize DDPG with it (both the actor and critic), and start training on walker_run using the extrinsic reward of the task.

For methods that use skills, include the agent, and the reward_free tag to false.

python finetune.py pretrained_agent=smm task=walker_run snapshot_ts=1000000 obs_type=states agent=smm reward_free=false

Monitoring

Logs are stored in the exp_local folder. To launch tensorboard run:

tensorboard --logdir exp_local

The console output is also available in a form:

| train | F: 6000 | S: 3000 | E: 6 | L: 1000 | R: 5.5177 | FPS: 96.7586 | T: 0:00:42

a training entry decodes as

F  : total number of environment frames
S  : total number of agent steps
E  : total number of episodes
R  : episode return
FPS: training throughput (frames per second)
T  : total training time
Combining Diverse Feature Priors

Combining Diverse Feature Priors This repository contains code for reproducing the results of our paper. Paper: https://arxiv.org/abs/2110.08220 Blog

Madry Lab 5 Nov 12, 2022
Using LSTM write Tang poetry

本教程将通过一个示例对LSTM进行介绍。通过搭建训练LSTM网络,我们将训练一个模型来生成唐诗。本文将对该实现进行详尽的解释,并阐明此模型的工作方式和原因。并不需要过多专业知识,但是可能需要新手花一些时间来理解的模型训练的实际情况。为了节省时间,请尽量选择GPU进行训练。

56 Dec 15, 2022
Efficient 3D human pose estimation in video using 2D keypoint trajectories

3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the

Meta Research 3.1k Dec 29, 2022
Non-Metric Space Library (NMSLIB): An efficient similarity search library and a toolkit for evaluation of k-NN methods for generic non-metric spaces.

Non-Metric Space Library (NMSLIB) Important Notes NMSLIB is generic but fast, see the results of ANN benchmarks. A standalone implementation of our fa

2.9k Jan 04, 2023
用opencv的dnn模块做yolov5目标检测,包含C++和Python两个版本的程序

yolov5-dnn-cpp-py yolov5s,yolov5l,yolov5m,yolov5x的onnx文件在百度云盘下载, 链接:https://pan.baidu.com/s/1d67LUlOoPFQy0MV39gpJiw 提取码:bayj python版本的主程序是main_yolov5.

365 Jan 04, 2023
A Peer-to-peer Platform for Secure, Privacy-preserving, Decentralized Data Science

PyGrid is a peer-to-peer network of data owners and data scientists who can collectively train AI models using PySyft. PyGrid is also the central serv

OpenMined 615 Jan 03, 2023
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
Inflated i3d network with inception backbone, weights transfered from tensorflow

I3D models transfered from Tensorflow to PyTorch This repo contains several scripts that allow to transfer the weights from the tensorflow implementat

Yana 479 Dec 08, 2022
The source code of CVPR17 'Generative Face Completion'.

GenerativeFaceCompletion Matcaffe implementation of our CVPR17 paper on face completion. In each panel from left to right: original face, masked input

Yijun Li 313 Oct 18, 2022
A PaddlePaddle implementation of STGCN with a few modifications in the model architecture in order to forecast traffic jam.

About This repository contains the code of a PaddlePaddle implementation of STGCN based on the paper Spatio-Temporal Graph Convolutional Networks: A D

Tianjian Li 1 Jan 11, 2022
nn_builder lets you build neural networks with less boilerplate code

nn_builder lets you build neural networks with less boilerplate code. You specify the type of network you want and it builds it. Install pip install n

Petros Christodoulou 157 Nov 20, 2022
This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners.

LiST (Lite Self-Training) This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners. LiST is short for Lite S

Microsoft 28 Dec 07, 2022
PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation.

ALiBi PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. Quickstart Clone this reposit

Jake Tae 4 Jul 27, 2022
audioLIME: Listenable Explanations Using Source Separation

audioLIME This repository contains the Python package audioLIME, a tool for creating listenable explanations for machine learning models in music info

Institute of Computational Perception 27 Dec 01, 2022
PyTorch implementation of the paper The Lottery Ticket Hypothesis for Object Recognition

LTH-ObjectRecognition The Lottery Ticket Hypothesis for Object Recognition Sharath Girish*, Shishira R Maiya*, Kamal Gupta, Hao Chen, Larry Davis, Abh

16 Feb 06, 2022
Deep Learning Head Pose Estimation using PyTorch.

Hopenet is an accurate and easy to use head pose estimation network. Models have been trained on the 300W-LP dataset and have been tested on real data with good qualitative performance.

Nataniel Ruiz 1.3k Dec 26, 2022
[NeurIPS-2020] Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID.

Self-paced Contrastive Learning (SpCL) The official repository for Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID

Yixiao Ge 286 Dec 21, 2022
PyTorch package for the discrete VAE used for DALL·E.

Overview [Blog] [Paper] [Model Card] [Usage] This is the official PyTorch package for the discrete VAE used for DALL·E. Installation Before running th

OpenAI 9.5k Jan 05, 2023
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
Generating Images with Recurrent Adversarial Networks

Generating Images with Recurrent Adversarial Networks Python (Theano) implementation of Generating Images with Recurrent Adversarial Networks code pro

Daniel Jiwoong Im 121 Sep 08, 2022