Efficient 3D human pose estimation in video using 2D keypoint trajectories

Overview

3D human pose estimation in video with temporal convolutions and semi-supervised training

This is the implementation of the approach described in the paper:

Dario Pavllo, Christoph Feichtenhofer, David Grangier, and Michael Auli. 3D human pose estimation in video with temporal convolutions and semi-supervised training. In Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

More demos are available at https://dariopavllo.github.io/VideoPose3D

Results on Human3.6M

Under Protocol 1 (mean per-joint position error) and Protocol 2 (mean-per-joint position error after rigid alignment).

2D Detections BBoxes Blocks Receptive Field Error (P1) Error (P2)
CPN Mask R-CNN 4 243 frames 46.8 mm 36.5 mm
CPN Ground truth 4 243 frames 47.1 mm 36.8 mm
CPN Ground truth 3 81 frames 47.7 mm 37.2 mm
CPN Ground truth 2 27 frames 48.8 mm 38.0 mm
Mask R-CNN Mask R-CNN 4 243 frames 51.6 mm 40.3 mm
Ground truth -- 4 243 frames 37.2 mm 27.2 mm

Quick start

To get started as quickly as possible, follow the instructions in this section. This should allow you train a model from scratch, test our pretrained models, and produce basic visualizations. For more detailed instructions, please refer to DOCUMENTATION.md.

Dependencies

Make sure you have the following dependencies installed before proceeding:

  • Python 3+ distribution
  • PyTorch >= 0.4.0

Optional:

  • Matplotlib, if you want to visualize predictions. Additionally, you need ffmpeg to export MP4 videos, and imagemagick to export GIFs.
  • MATLAB, if you want to experiment with HumanEva-I (you need this to convert the dataset).

Dataset setup

You can find the instructions for setting up the Human3.6M and HumanEva-I datasets in DATASETS.md. For this short guide, we focus on Human3.6M. You are not required to setup HumanEva, unless you want to experiment with it.

In order to proceed, you must also copy CPN detections (for Human3.6M) and/or Mask R-CNN detections (for HumanEva).

Evaluating our pretrained models

The pretrained models can be downloaded from AWS. Put pretrained_h36m_cpn.bin (for Human3.6M) and/or pretrained_humaneva15_detectron.bin (for HumanEva) in the checkpoint/ directory (create it if it does not exist).

mkdir checkpoint
cd checkpoint
wget https://dl.fbaipublicfiles.com/video-pose-3d/pretrained_h36m_cpn.bin
wget https://dl.fbaipublicfiles.com/video-pose-3d/pretrained_humaneva15_detectron.bin
cd ..

These models allow you to reproduce our top-performing baselines, which are:

  • 46.8 mm for Human3.6M, using fine-tuned CPN detections, bounding boxes from Mask R-CNN, and an architecture with a receptive field of 243 frames.
  • 33.0 mm for HumanEva-I (on 3 actions), using pretrained Mask R-CNN detections, and an architecture with a receptive field of 27 frames. This is the multi-action model trained on 3 actions (Walk, Jog, Box).

To test on Human3.6M, run:

python run.py -k cpn_ft_h36m_dbb -arc 3,3,3,3,3 -c checkpoint --evaluate pretrained_h36m_cpn.bin

To test on HumanEva, run:

python run.py -d humaneva15 -k detectron_pt_coco -str Train/S1,Train/S2,Train/S3 -ste Validate/S1,Validate/S2,Validate/S3 -a Walk,Jog,Box --by-subject -c checkpoint --evaluate pretrained_humaneva15_detectron.bin

DOCUMENTATION.md provides a precise description of all command-line arguments.

Inference in the wild

We have introduced an experimental feature to run our model on custom videos. See INFERENCE.md for more details.

Training from scratch

If you want to reproduce the results of our pretrained models, run the following commands.

For Human3.6M:

python run.py -e 80 -k cpn_ft_h36m_dbb -arc 3,3,3,3,3

By default the application runs in training mode. This will train a new model for 80 epochs, using fine-tuned CPN detections. Expect a training time of 24 hours on a high-end Pascal GPU. If you feel that this is too much, or your GPU is not powerful enough, you can train a model with a smaller receptive field, e.g.

  • -arc 3,3,3,3 (81 frames) should require 11 hours and achieve 47.7 mm.
  • -arc 3,3,3 (27 frames) should require 6 hours and achieve 48.8 mm.

You could also lower the number of epochs from 80 to 60 with a negligible impact on the result.

For HumanEva:

python run.py -d humaneva15 -k detectron_pt_coco -str Train/S1,Train/S2,Train/S3 -ste Validate/S1,Validate/S2,Validate/S3 -b 128 -e 1000 -lrd 0.996 -a Walk,Jog,Box --by-subject

This will train for 1000 epochs, using Mask R-CNN detections and evaluating each subject separately. Since HumanEva is much smaller than Human3.6M, training should require about 50 minutes.

Semi-supervised training

To perform semi-supervised training, you just need to add the --subjects-unlabeled argument. In the example below, we use ground-truth 2D poses as input, and train supervised on just 10% of Subject 1 (specified by --subset 0.1). The remaining subjects are treated as unlabeled data and are used for semi-supervision.

python run.py -k gt --subjects-train S1 --subset 0.1 --subjects-unlabeled S5,S6,S7,S8 -e 200 -lrd 0.98 -arc 3,3,3 --warmup 5 -b 64

This should give you an error around 65.2 mm. By contrast, if we only train supervised

python run.py -k gt --subjects-train S1 --subset 0.1 -e 200 -lrd 0.98 -arc 3,3,3 -b 64

we get around 80.7 mm, which is significantly higher.

Visualization

If you have the original Human3.6M videos, you can generate nice visualizations of the model predictions. For instance:

python run.py -k cpn_ft_h36m_dbb -arc 3,3,3,3,3 -c checkpoint --evaluate pretrained_h36m_cpn.bin --render --viz-subject S11 --viz-action Walking --viz-camera 0 --viz-video "/path/to/videos/S11/Videos/Walking.54138969.mp4" --viz-output output.gif --viz-size 3 --viz-downsample 2 --viz-limit 60

The script can also export MP4 videos, and supports a variety of parameters (e.g. downsampling/FPS, size, bitrate). See DOCUMENTATION.md for more details.

License

This work is licensed under CC BY-NC. See LICENSE for details. Third-party datasets are subject to their respective licenses. If you use our code/models in your research, please cite our paper:

@inproceedings{pavllo:videopose3d:2019,
  title={3D human pose estimation in video with temporal convolutions and semi-supervised training},
  author={Pavllo, Dario and Feichtenhofer, Christoph and Grangier, David and Auli, Michael},
  booktitle={Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2019}
}
Owner
Meta Research
Meta Research
Official implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN Official PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. Prerequisites Python 2.7

SK T-Brain 754 Dec 29, 2022
Elegy is a framework-agnostic Trainer interface for the Jax ecosystem.

Elegy Elegy is a framework-agnostic Trainer interface for the Jax ecosystem. Main Features Easy-to-use: Elegy provides a Keras-like high-level API tha

435 Dec 30, 2022
Learning and Building Convolutional Neural Networks using PyTorch

Image Classification Using Deep Learning Learning and Building Convolutional Neural Networks using PyTorch. Models, selected are based on number of ci

Mayur 126 Dec 22, 2022
DSL for matching Python ASTs

py-ast-rule-engine This library provides a DSL (domain-specific language) to match a pattern inside a Python AST (abstract syntax tree). The library i

1 Dec 18, 2021
Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization

FAC-Net Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization Linjiang Huang (CUHK), Liang Wang (CASIA), Hongsheng

21 Nov 22, 2022
Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network

DroneCrowd Paper Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark. Introduction This paper proposes a space-time multi-scale atte

VisDrone 98 Nov 16, 2022
A collection of papers about Transformer in the field of medical image analysis.

A collection of papers about Transformer in the field of medical image analysis.

Junyu Chen 377 Jan 05, 2023
[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

MDCA Calibration This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved

MDCA Calibration 21 Dec 22, 2022
Grammar Induction using a Template Tree Approach

Gitta Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on data

Thomas Winters 36 Nov 15, 2022
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Qiao Liu 50 Dec 18, 2022
Fluency ENhanced Sentence-bert Evaluation (FENSE), metric for audio caption evaluation. And Benchmark dataset AudioCaps-Eval, Clotho-Eval.

FENSE The metric, Fluency ENhanced Sentence-bert Evaluation (FENSE), for audio caption evaluation, proposed in the paper "Can Audio Captions Be Evalua

Zhiling Zhang 13 Dec 23, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted

NU-Wave — Official PyTorch Implementation NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling Junhyeok Lee, Seungu Han @ MINDsLab Inc

MINDs Lab 242 Dec 23, 2022
[EMNLP 2020] Keep CALM and Explore: Language Models for Action Generation in Text-based Games

Contextual Action Language Model (CALM) and the ClubFloyd Dataset Code and data for paper Keep CALM and Explore: Language Models for Action Generation

Princeton Natural Language Processing 43 Dec 16, 2022
Exploring Image Deblurring via Blur Kernel Space (CVPR'21)

Exploring Image Deblurring via Encoded Blur Kernel Space About the project We introduce a method to encode the blur operators of an arbitrary dataset

VinAI Research 118 Dec 19, 2022
A complete, self-contained example for training ImageNet at state-of-the-art speed with FFCV

ffcv ImageNet Training A minimal, single-file PyTorch ImageNet training script designed for hackability. Run train_imagenet.py to get... ...high accur

FFCV 92 Dec 31, 2022
Combinatorially Hard Games where the levels are procedurally generated

puzzlegen Implementation of two procedurally simulated environments with gym interfaces. IceSlider: the agent needs to reach and stop on the pink squa

Autonomous Learning Group 3 Jun 26, 2022
Collection of Docker images for ML/DL and video processing projects

Collection of Docker images for ML/DL and video processing projects. Overview of images Three types of images differ by tag postfix: base: Python with

OSAI 87 Nov 22, 2022
Long Expressive Memory (LEM)

Long Expressive Memory for Sequence Modeling This repository contains the implementation to reproduce the numerical experiments of the paper Long Expr

Konstantin Rusch 47 Dec 17, 2022
[ICLR'21] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization

FedBN: Federated Learning on Non-IID Features via Local Batch Normalization This is the PyTorch implemention of our paper FedBN: Federated Learning on

<a href=[email protected]"> 156 Dec 15, 2022
Audio2Face - Audio To Face With Python

Audio2Face Discription We create a project that transforms audio to blendshape w

FACEGOOD 724 Dec 26, 2022