Code for visualizing the loss landscape of neural nets

Overview

Visualizing the Loss Landscape of Neural Nets

This repository contains the PyTorch code for the paper

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer and Tom Goldstein. Visualizing the Loss Landscape of Neural Nets. NIPS, 2018.

An interactive 3D visualizer for loss surfaces has been provided by telesens.

Given a network architecture and its pre-trained parameters, this tool calculates and visualizes the loss surface along random direction(s) near the optimal parameters. The calculation can be done in parallel with multiple GPUs per node, and multiple nodes. The random direction(s) and loss surface values are stored in HDF5 (.h5) files after they are produced.

Setup

Environment: One or more multi-GPU node(s) with the following software/libraries installed:

Pre-trained models: The code accepts pre-trained PyTorch models for the CIFAR-10 dataset. To load the pre-trained model correctly, the model file should contain state_dict, which is saved from the state_dict() method. The default path for pre-trained networks is cifar10/trained_nets. Some of the pre-trained models and plotted figures can be downloaded here:

Data preprocessing: The data pre-processing method used for visualization should be consistent with the one used for model training. No data augmentation (random cropping or horizontal flipping) is used in calculating the loss values.

Visualizing 1D loss curve

Creating 1D linear interpolations

The 1D linear interpolation method [1] evaluates the loss values along the direction between two minimizers of the same network loss function. This method has been used to compare the flatness of minimizers trained with different batch sizes [2]. A 1D linear interpolation plot is produced using the plot_surface.py method.

mpirun -n 4 python plot_surface.py --mpi --cuda --model vgg9 --x=-0.5:1.5:401 --dir_type states \
--model_file cifar10/trained_nets/vgg9_sgd_lr=0.1_bs=128_wd=0.0_save_epoch=1/model_300.t7 \
--model_file2 cifar10/trained_nets/vgg9_sgd_lr=0.1_bs=8192_wd=0.0_save_epoch=1/model_300.t7 --plot
  • --x=-0.5:1.5:401 sets the range and resolution for the plot. The x-coordinates in the plot will run from -0.5 to 1.5 (the minimizers are located at 0 and 1), and the loss value will be evaluated at 401 locations along this line.
  • --dir_type states indicates the direction contains dimensions for all parameters as well as the statistics of the BN layers (running_mean and running_var). Note that ignoring running_mean and running_var cannot produce correct loss values when plotting two solutions togeather in the same figure.
  • The two model files contain network parameters describing the two distinct minimizers of the loss function. The plot will interpolate between these two minima.

VGG-9 SGD, WD=0

Producing plots along random normalized directions

A random direction with the same dimension as the model parameters is created and "filter normalized." Then we can sample loss values along this direction.

mpirun -n 4 python plot_surface.py --mpi --cuda --model vgg9 --x=-1:1:51 \
--model_file cifar10/trained_nets/vgg9_sgd_lr=0.1_bs=128_wd=0.0_save_epoch=1/model_300.t7 \
--dir_type weights --xnorm filter --xignore biasbn --plot
  • --dir_type weights indicates the direction has the same dimensions as the learned parameters, including bias and parameters in the BN layers.
  • --xnorm filter normalizes the random direction at the filter level. Here, a "filter" refers to the parameters that produce a single feature map. For fully connected layers, a "filter" contains the weights that contribute to a single neuron.
  • --xignore biasbn ignores the direction corresponding to bias and BN parameters (fill the corresponding entries in the random vector with zeros).

VGG-9 SGD, WD=0

We can also customize the appearance of the 1D plots by calling plot_1D.py once the surface file is available.

Visualizing 2D loss contours

To plot the loss contours, we choose two random directions and normalize them in the same way as the 1D plotting.

mpirun -n 4 python plot_surface.py --mpi --cuda --model resnet56 --x=-1:1:51 --y=-1:1:51 \
--model_file cifar10/trained_nets/resnet56_sgd_lr=0.1_bs=128_wd=0.0005/model_300.t7 \
--dir_type weights --xnorm filter --xignore biasbn --ynorm filter --yignore biasbn  --plot

ResNet-56

Once a surface is generated and stored in a .h5 file, we can produce and customize a contour plot using the script plot_2D.py.

python plot_2D.py --surf_file path_to_surf_file --surf_name train_loss
  • --surf_name specifies the type of surface. The default choice is train_loss,
  • --vmin and --vmax sets the range of values to be plotted.
  • --vlevel sets the step of the contours.

Visualizing 3D loss surface

plot_2D.py can make a basic 3D loss surface plot with matplotlib. If you want a more detailed rendering that uses lighting to display details, you can render the loss surface with ParaView.

ResNet-56-noshort ResNet-56

To do this, you must

  1. Convert the surface .h5 file to a .vtp file.
python h52vtp.py --surf_file path_to_surf_file --surf_name train_loss --zmax  10 --log

This will generate a VTK file containing the loss surface with max value 10 in the log scale.

  1. Open the .vtp file with ParaView. In ParaView, open the .vtp file with the VTK reader. Click the eye icon in the Pipeline Browser to make the figure show up. You can drag the surface around, and change the colors in the Properties window.

  2. If the surface appears extremely skinny and needle-like, you may need to adjust the "transforming" parameters in the left control panel. Enter numbers larger than 1 in the "scale" fields to widen the plot.

  3. Select Save screenshot in the File menu to save the image.

Reference

[1] Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. Qualitatively characterizing neural network optimization problems. ICLR, 2015.

[2] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. ICLR, 2017.

Citation

If you find this code useful in your research, please cite:

@inproceedings{visualloss,
  title={Visualizing the Loss Landscape of Neural Nets},
  author={Li, Hao and Xu, Zheng and Taylor, Gavin and Studer, Christoph and Goldstein, Tom},
  booktitle={Neural Information Processing Systems},
  year={2018}
}
Owner
Tom Goldstein
Tom Goldstein
SPRING is a seq2seq model for Text-to-AMR and AMR-to-Text (AAAI2021).

SPRING This is the repo for SPRING (Symmetric ParsIng aNd Generation), a novel approach to semantic parsing and generation, presented at AAAI 2021. Wi

Sapienza NLP group 98 Dec 21, 2022
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023
CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

CARLA - Counterfactual And Recourse Library CARLA is a python library to benchmark counterfactual explanation and recourse models. It comes out-of-the

Carla Recourse 200 Dec 28, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Jan 06, 2023
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

Object DGCNN & DETR3D This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110

Wang, Yue 539 Jan 07, 2023
Dataset used in "PlantDoc: A Dataset for Visual Plant Disease Detection" accepted in CODS-COMAD 2020

PlantDoc: A Dataset for Visual Plant Disease Detection This repository contains the Cropped-PlantDoc dataset used for benchmarking classification mode

Pratik Kayal 109 Dec 29, 2022
Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications

Labelbox Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications. Use this github repository to help you s

labelbox 1.7k Dec 29, 2022
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.

NNI Doc | 简体中文 NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate Feature Engineering, Neural Architecture

Microsoft 12.4k Dec 31, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 02, 2023
City-seeds - A random generator of cultural characteristics intended to spark ideas and help draw threads

City Seeds This is a random generator of cultural characteristics intended to sp

Aydin O'Leary 2 Mar 12, 2022
NAACL2021 - COIL Contextualized Lexical Retriever

COIL Repo for our NAACL paper, COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List. The code covers learning

Luyu Gao 108 Dec 31, 2022
Official repository for the paper "Going Beyond Linear Transformers with Recurrent Fast Weight Programmers"

Recurrent Fast Weight Programmers This is the official repository containing the code we used to produce the experimental results reported in the pape

IDSIA 36 Nov 15, 2022
Source code and data in paper "MDFEND: Multi-domain Fake News Detection (CIKM'21)"

MDFEND: Multi-domain Fake News Detection This is an official implementation for MDFEND: Multi-domain Fake News Detection which has been accepted by CI

Rich 40 Dec 18, 2022
Hierarchical probabilistic 3D U-Net, with attention mechanisms (—𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 𝘜-𝘕𝘦𝘵, 𝘚𝘌𝘙𝘦𝘴𝘕𝘦𝘵) and a nested decoder structure with deep supervision (—𝘜𝘕𝘦𝘵++).

Hierarchical probabilistic 3D U-Net, with attention mechanisms (—𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 𝘜-𝘕𝘦𝘵, 𝘚𝘌𝘙𝘦𝘴𝘕𝘦𝘵) and a nested decoder structure with deep supervision (—𝘜𝘕𝘦𝘵++). Built in TensorFlow 2.5. Configured for vox

Diagnostic Image Analysis Group 32 Dec 08, 2022
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.

CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec

Google Research 80 Dec 25, 2022
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022
Face Transformer for Recognition

Face-Transformer This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2). Recently there has been great interests of

Zhong Yaoyao 153 Nov 30, 2022
Plenoxels: Radiance Fields without Neural Networks, Code release WIP

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Alex Yu 2.3k Dec 30, 2022
Constructing Neural Network-Based Models for Simulating Dynamical Systems

Constructing Neural Network-Based Models for Simulating Dynamical Systems Note this repo is work in progress prior to reviewing This is a companion re

Christian Møldrup Legaard 21 Nov 25, 2022