CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

Overview

PyPI - Python Version GitHub Workflow Status Read the Docs Code style: black

CARLA - Counterfactual And Recourse Library

CARLA is a python library to benchmark counterfactual explanation and recourse models. It comes out-of-the box with commonly used datasets and various machine learning models. Designed with extensibility in mind: Easily include your own counterfactual methods, new machine learning models or other datasets.

Find extensive documentation here! Our arXiv paper can be found here.

Available Datasets

Implemented Counterfactual Methods

  • Actionable Recourse (AR): Paper
  • CCHVAE: Paper
  • Contrastive Explanations Method (CEM): Paper
  • Counterfactual Latent Uncertainty Explanations (CLUE): Paper
  • CRUDS: Paper
  • Diverse Counterfactual Explanations (DiCE): Paper
  • Feasible and Actionable Counterfactual Explanations (FACE): Paper
  • Growing Sphere (GS): Paper
  • Revise: Paper
  • Wachter: Paper

Provided Machine Learning Models

  • ANN: Artificial Neural Network with 2 hidden layers and ReLU activation function
  • LR: Linear Model with no hidden layer and no activation function

Which Recourse Methods work with which ML framework?

The framework a counterfactual method currently works with is dependent on its underlying implementation. It is planned to make all recourse methods available for all ML frameworks . The latest state can be found here:

Recourse Method Tensorflow Pytorch
Actionable Recourse X X
CCHVAE X
CEM X
CLUE X
CRUDS X
DiCE X X
FACE X X
Growing Spheres X X
Revise X
Wachter X

Installation

Requirements

  • python3.7
  • pip

Install via pip

pip install carla-recourse

Usage Example

from carla import DataCatalog, MLModelCatalog
from carla.recourse_methods import GrowingSpheres

# load a catalog dataset
data_name = "adult"
dataset = DataCatalog(data_name)

# load artificial neural network from catalog
model = MLModelCatalog(dataset, "ann")

# get factuals from the data to generate counterfactual examples
factuals = dataset.raw.iloc[:10]

# load a recourse model and pass black box model
gs = GrowingSpheres(model)

# generate counterfactual examples
counterfactuals = gs.get_counterfactuals(factuals)

Contributing

Requirements

  • python3.7-venv (when not already shipped with python3.7)
  • Recommended: GNU Make

Installation

Using make:

make requirements

Using python directly or within activated virtual environment:

pip install -U pip setuptools wheel
pip install -e .

Testing

Using make:

make test

Using python directly or within activated virtual environment:

pip install -r requirements-dev.txt
python -m pytest test/*

Linting and Styling

We use pre-commit hooks within our build pipelines to enforce:

  • Python linting with flake8.
  • Python styling with black.

Install pre-commit with:

make install-dev

Using python directly or within activated virtual environment:

pip install -r requirements-dev.txt
pre-commit install

Licence

carla is under the MIT Licence. See the LICENCE for more details.

Citation

This project was recently accepted to NeurIPS 2021 (Benchmark & Data Sets Track). If you use this codebase, please cite:

@misc{pawelczyk2021carla,
      title={CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms},
      author={Martin Pawelczyk and Sascha Bielawski and Johannes van den Heuvel and Tobias Richter and Gjergji Kasneci},
      year={2021},
      eprint={2108.00783},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
Owner
Carla Recourse
Carla Recourse
Implementation of Graph Convolutional Networks in TensorFlow

Graph Convolutional Networks This is a TensorFlow implementation of Graph Convolutional Networks for the task of (semi-supervised) classification of n

Thomas Kipf 6.6k Dec 30, 2022
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec

Zhengqi Li 583 Dec 30, 2022
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function

With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the momen

ChemEngAI 40 Dec 27, 2022
neural image generation

pixray Pixray is an image generation system. It combines previous ideas including: Perception Engines which uses image augmentation and iteratively op

dribnet 398 Dec 17, 2022
The final project for "Applying AI to Wearable Device Data" course from "AI for Healthcare" - Udacity.

Motion Compensated Pulse Rate Estimation Overview This project has 2 main parts. Develop a Pulse Rate Algorithm on the given training data. Then Test

Omar Laham 2 Oct 25, 2022
ConformalLayers: A non-linear sequential neural network with associative layers

ConformalLayers: A non-linear sequential neural network with associative layers ConformalLayers is a conformal embedding of sequential layers of Convo

Prograf-UFF 5 Sep 28, 2022
Code of the paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler

Part Detector Discovery This is the code used in our paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodne

Computer Vision Group Jena 17 Feb 22, 2022
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

Billy HE 141 Dec 30, 2022
This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents".

Introduction This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents". If

tsc 0 Jan 11, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders: A PyTorch Implementation This is a PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners: @

Meta Research 4.8k Jan 04, 2023
DeepLab2: A TensorFlow Library for Deep Labeling

DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks.

Google Research 845 Jan 04, 2023
iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis Andreas Bl

CompVis Heidelberg 36 Dec 25, 2022
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these enviro

Google 1.5k Jan 02, 2023
Viewmaker Networks: Learning Views for Unsupervised Representation Learning

Viewmaker Networks: Learning Views for Unsupervised Representation Learning Alex Tamkin, Mike Wu, and Noah Goodman Paper link: https://arxiv.org/abs/2

Alex Tamkin 31 Dec 01, 2022
Multi-Joint dynamics with Contact. A general purpose physics simulator.

MuJoCo Physics MuJoCo stands for Multi-Joint dynamics with Contact. It is a general purpose physics engine that aims to facilitate research and develo

DeepMind 5.2k Jan 02, 2023
Pytorch implementation of Cut-Thumbnail in the paper Cut-Thumbnail:A Novel Data Augmentation for Convolutional Neural Network.

Cut-Thumbnail (Accepted at ACM MULTIMEDIA 2021) Tianshu Xie, Xuan Cheng, Xiaomin Wang, Minghui Liu, Jiali Deng, Tao Zhou, Ming Liu This is the officia

3 Apr 12, 2022
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres

MEGVII Research 36 Sep 07, 2022
FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.

FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori

Google 208 Dec 14, 2022
Solving Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge

Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge Associated code for the paper Zero-Shot Learning in Named Entity Recognitio

Søren Hougaard Mulvad 13 Dec 25, 2022