SPEAR: Semi suPErvised dAta progRamming

Overview

PyPI docs license website GitHub repo size



Semi-Supervised Data Programming for Data Efficient Machine Learning

SPEAR is a library for data programming with semi-supervision. The package implements several recent data programming approaches including facility to programmatically label and build training data.

Pipeline

  • Design Labeling functions(LFs)
  • generate pickle file containing labels by passing raw data to LFs
  • Use one of the Label Aggregators(LA) to get final labels



SPEAR provides functionality such as

  • development of LFs/rules/heuristics for quick labeling
  • compare against several data programming approaches
  • compare against semi-supervised data programming approaches
  • use subset selection to make best use of the annotation efforts

Labelling Functions (LFs)

  • discrete LFs - Users can define LFs that return discrete labels
  • continuous LFs - return continuous scores/confidence to the labels assigned

Approaches Implemented

You can read this paper to know about below approaches

  • Only-L
  • Learning to Reweight
  • Posterior Regularization
  • Imply Loss
  • CAGE
  • Joint Learning

Data folder for SMS can be found here. This folder needs to be placed in the same directory as notebooks folder is in, to run the notebooks or examples.

Installation

Method 1

To install latest version of SPEAR package using PyPI:

pip install decile-spear

Method 2

SPEAR requires Python 3.6 or later. First install submodlib. Then install SPEAR:

git clone https://github.com/decile-team/spear.git
cd spear
pip install -r requirements/requirements.txt

Citation

@misc{abhishek2021spear,
      title={SPEAR : Semi-supervised Data Programming in Python}, 
      author={Guttu Sai Abhishek and Harshad Ingole and Parth Laturia and Vineeth Dorna and Ayush Maheshwari and Ganesh Ramakrishnan and Rishabh Iyer},
      year={2021},
      eprint={2108.00373},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Quick Links

Acknowledgment

SPEAR takes inspiration, builds upon, and uses pieces of code from several open source codebases. These include Snorkel, Snuba & Imply Loss. Also, SPEAR uses SUBMODLIB for subset selection, which is provided by DECILE too.

Team

SPEAR is created and maintained by Ayush, Abhishek, Vineeth, Harshad, Parth, Pankaj, Rishabh Iyer, and Ganesh Ramakrishnan. We look forward to have SPEAR more community driven. Please use it and contribute to it for your research, and feel free to use it for your commercial projects. We will add the major contributors here.

Publications

[1] Maheshwari, Ayush, et al. Data Programming using Semi-Supervision and Subset Selection, In Findings of ACL (Long Paper) 2021.

[2] Chatterjee, Oishik, Ganesh Ramakrishnan, and Sunita Sarawagi. Data Programming using Continuous and Quality-Guided Labeling Functions, In AAAI 2020.

[3] Sahay, Atul, et al. Rule augmented unsupervised constituency parsing, In Findings of ACL (Short Paper) 2021.

You might also like...
Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images

SASSnet Code for paper: Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images(MICCAI 2020) Our code is origin from UA-MT You can fin

Semi-supervised Learning for Sentiment Analysis

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

 From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning approach for low-light image enhancement.

Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision
[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision

TorchSemiSeg [CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision by Xiaokang Chen1, Yuhui Yuan2, Gang Zeng1, Jingdong Wang

Comments
  • Updated condition for Gold Label check and passing parameter name passing

    Updated condition for Gold Label check and passing parameter name passing

    1. Current Version of Spear fails when we are trying to do LF analysis without passing Gold Labels and their values is passed as None and is causing the following error as it is not checked

    Y = np.array([self.mapping[v] for v in Y]) TypeError: 'NoneType' object is not iterable

    1. Also their is a function call of confusion_matrix in lf_summary method, which requires the parameter name to execute properly else it fails with following error of argument passing

    confusion_matrix(Y, self.L[:, i], labels)[1:, 1:] for i in range(m) TypeError: confusion_matrix() takes 2 positional arguments but 3 were given

    The current code change fixes these two issues.

    opened by kasuba-badri-vishal 1
  • sms_jl.ipynb ISSUE with

    sms_jl.ipynb ISSUE with "Some Labelling Functions" code snippet

    I have changed the directory of previously glove_w2v.txt and then ran on my local pc and installed all reqd libraries but it shows an invalid literal for int() with base 10: 'import'

    I think its an issue with gensim but can;t seem to resolve it

    i'm attaching a picture down below :

    https://cdn.discordapp.com/attachments/754057588714373325/989172192078098442/unknown.png

    opened by Brshank 1
Releases(v1.0.0)
Owner
decile-team
DECILE: Data EffiCient machIne LEarning
decile-team
TorchX: A PyTorch Extension Library for More Efficient Deep Learning

TorchX TorchX: A PyTorch Extension Library for More Efficient Deep Learning. @misc{torchx, author = {Ansheng You and Changxu Wang}, title = {T

Donny You 8 May 28, 2022
Python-kafka-reset-consumergroup-offset-example - Python Kafka reset consumergroup offset example

Python Kafka reset consumergroup offset example This is a simple example of how

Willi Carlsen 1 Feb 16, 2022
This repository builds a basic vision transformer from scratch so that one beginner can understand the theory of vision transformer.

vision-transformer-from-scratch This repository includes several kinds of vision transformers from scratch so that one beginner can understand the the

1 Dec 24, 2021
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

DV Lab 137 Dec 14, 2022
OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021)

OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021) Video demo We here provide a video demo from co

20 Nov 25, 2022
Dense Gaussian Processes for Few-Shot Segmentation

DGPNet - Dense Gaussian Processes for Few-Shot Segmentation Welcome to the public repository for DGPNet. The paper is available at arxiv: https://arxi

37 Jan 07, 2023
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

EMI-Group 175 Dec 30, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

ChongjianGE 89 Dec 02, 2022
Vector Quantization, in Pytorch

Vector Quantization - Pytorch A vector quantization library originally transcribed from Deepmind's tensorflow implementation, made conveniently into a

Phil Wang 665 Jan 08, 2023
Source Code for DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances (https://arxiv.org/pdf/2012.01775.pdf)

DialogBERT This is a PyTorch implementation of the DialogBERT model described in DialogBERT: Neural Response Generation via Hierarchical BERT with Dis

Xiaodong Gu 67 Jan 06, 2023
Scalable Graph Neural Networks for Heterogeneous Graphs

Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave

Facebook Research 67 Dec 03, 2022
Official codebase used to develop Vision Transformer, MLP-Mixer, LiT and more.

Big Vision This codebase is designed for training large-scale vision models on Cloud TPU VMs. It is based on Jax/Flax libraries, and uses tf.data and

Google Research 701 Jan 03, 2023
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023
TensorFlow implementation of Deep Reinforcement Learning papers

Deep Reinforcement Learning in TensorFlow TensorFlow implementation of Deep Reinforcement Learning papers. This implementation contains: [1] Playing A

Taehoon Kim 1.6k Jan 03, 2023
This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking".

SCT This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking" The spatial-channel Transformer (SCT) enhan

Intelligent Vision for Robotics in Complex Environment 27 Nov 23, 2022
Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef

6 Oct 08, 2022
ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information This repository contains code, model, dataset for ChineseBERT at ACL2021. Ch

413 Dec 01, 2022
SNIPS: Solving Noisy Inverse Problems Stochastically

SNIPS: Solving Noisy Inverse Problems Stochastically This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problem

Bahjat Kawar 35 Nov 09, 2022
This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (ICLR 2022)

Equivariant Subgraph Aggregation Networks (ESAN) This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (IC

Beatrice Bevilacqua 59 Dec 13, 2022