Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Overview

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC)

Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Liwei Wang, Jiaya Jia

This is the official PyTorch implementation of our paper Semi-supervised Semantic Segmentation with Directional Context-aware Consistency that has been accepted to 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021). [Paper]

Highlight

  1. Our method achives the state-of-the-art performance on semi-supervised semantic segmentation.
  2. Based on CCT, this Repository also supports efficient distributed training with multiple GPUs.

Get Started

Environment

The repository is tested on Ubuntu 18.04.3 LTS, Python 3.6.9, PyTorch 1.6.0 and CUDA 10.2

pip install -r requirements.txt

Datasets Preparation

  1. Firstly, download the PASCAL VOC Dataset, and the extra annotations from SegmentationClassAug.
  2. Extract the above compression files into your desired path, and make it follow the directory tree as below.
-VOCtrainval_11-May-2012
    -VOCdevkit
        -VOC2012
            -Annotations
            -ImageSets
            -JPEGImages
            -SegmentationClass
            -SegmentationClassAug
            -SegmentationObject
  1. Set 'data_dir' in the config file into '[YOUR_PATH]/VOCtrainval_11-May-2012'.

Training

Firsly, you should download the PyTorch ResNet101 or ResNet50 ImageNet-pretrained weight, and put it into the 'pretrained/' directory using the following commands.

cd Context-Aware-Consistency
mkdir pretrained
cd pretrained
wget https://download.pytorch.org/models/resnet50-19c8e357.pth # ResNet50
wget https://download.pytorch.org/models/resnet101-5d3b4d8f.pth # ResNet101

Run the following commands for training.

  • train the model on the 1/8 labeled data (the 0-th data list) of PASCAL VOC with the segmentation network and the backbone set to DeepLabv3+ and ResNet50 respectively.
python3 train.py --config configs/voc_cac_deeplabv3+_resnet50_1over8_datalist0.json
  • train the model on the 1/8 labeled data (the 0-th data list) of PASCAL VOC with the segmentation network and the backbone set to DeepLabv3+ and ResNet101 respectively.
python3 train.py --config configs/voc_cac_deeplabv3+_resnet101_1over8_datalist0.json

Testing

For testing, run the following command.

python3 train.py --config [CONFIG_PATH] --resume [CHECKPOINT_PATH] --test True

Pre-trained Models

For your convenience, you can download some of the pre-trained models from Here.

Related Repositories

This repository highly depends on the CCT repository at https://github.com/yassouali/CCT. We thank the authors of CCT for their great work and clean code.

Besides, we also borrow some codes from the following repositories.

Thanks a lot for their great work.

Citation

If you find this project useful, please consider citing:

@inproceedings{lai2021cac,
  title     = {Semi-supervised Semantic Segmentation with Directional Context-aware Consistency},
  author    = {Xin Lai, Zhuotao Tian, Li Jiang, Shu Liu, Hengshuang Zhao, Liwei Wang and Jiaya Jia},
  booktitle = {CVPR},
  year      = {2021}
}
Owner
DV Lab
Deep Vision Lab
DV Lab
https://sites.google.com/cornell.edu/recsys2021tutorial

Counterfactual Learning and Evaluation for Recommender Systems (RecSys'21 Tutorial) Materials for "Counterfactual Learning and Evaluation for Recommen

yuta-saito 45 Nov 10, 2022
Code of paper: "DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks"

DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks Abstract: Adversarial training has been proven to

倪仕文 (Shiwen Ni) 58 Nov 10, 2022
Official implementation of VQ-Diffusion

Vector Quantized Diffusion Model for Text-to-Image Synthesis Overview This is the official repo for the paper: [Vector Quantized Diffusion Model for T

Microsoft 592 Jan 03, 2023
Implementation of ReSeg using PyTorch

Implementation of ReSeg using PyTorch ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation Pascal-Part Annotations Pascal VOC 2010

Onur Kaplan 46 Nov 23, 2022
A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

Jayson Reis 94 Nov 21, 2022
PyTorch implementation of Super SloMo by Jiang et al.

Super-SloMo PyTorch implementation of "Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation" by Jiang H., Sun

Avinash Paliwal 2.9k Jan 03, 2023
Pytorch library for end-to-end transformer models training and serving

Pytorch library for end-to-end transformer models training and serving

Mikhail Grankin 768 Jan 01, 2023
CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing

CapsuleVOS This is the code for the ICCV 2019 paper CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing. Arxiv Link: https://a

53 Oct 27, 2022
Hierarchical Few-Shot Generative Models

Hierarchical Few-Shot Generative Models Giorgio Giannone, Ole Winther This repo contains code and experiments for the paper Hierarchical Few-Shot Gene

Giorgio Giannone 6 Dec 12, 2022
[CVPR 2021] Monocular depth estimation using wavelets for efficiency

Single Image Depth Prediction with Wavelet Decomposition Michaël Ramamonjisoa, Michael Firman, Jamie Watson, Vincent Lepetit and Daniyar Turmukhambeto

Niantic Labs 205 Jan 02, 2023
Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D

Nicholas Monath 35 Nov 16, 2022
code for Image Manipulation Detection by Multi-View Multi-Scale Supervision

MVSS-Net Code and models for ICCV 2021 paper: Image Manipulation Detection by Multi-View Multi-Scale Supervision Update 22.02.17, Pretrained model for

dong_chengbo 131 Dec 30, 2022
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel

1.3k Dec 29, 2022
Python library for science observations from the James Webb Space Telescope

JWST Calibration Pipeline JWST requires Python 3.7 or above and a C compiler for dependencies. Linux and MacOS platforms are tested and supported. Win

Space Telescope Science Institute 386 Dec 30, 2022
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".

AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio

551 Dec 29, 2022
Instance-based label smoothing for improving deep neural networks generalization and calibration

Instance-based Label Smoothing for Neural Networks Pytorch Implementation of the algorithm. This repository includes a new proposed method for instanc

Mohamed Maher 1 Aug 13, 2022
SimpleDepthEstimation - An unified codebase for NN-based monocular depth estimation methods

SimpleDepthEstimation Introduction This is an unified codebase for NN-based monocular depth estimation methods, the framework is based on detectron2 (

8 Dec 13, 2022
Official Implementation and Dataset of "PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency", CVPR 2021

Portrait Photo Retouching with PPR10K Paper | Supplementary Material PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask an

184 Dec 11, 2022
Development kit for MIT Scene Parsing Benchmark

Development Kit for MIT Scene Parsing Benchmark [NEW!] Our PyTorch implementation is released in the following repository: https://github.com/hangzhao

MIT CSAIL Computer Vision 424 Dec 01, 2022
GPU-Accelerated Deep Learning Library in Python

Hebel GPU-Accelerated Deep Learning Library in Python Hebel is a library for deep learning with neural networks in Python using GPU acceleration with

Hannes Bretschneider 1.2k Dec 21, 2022