This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (ICLR 2022)

Overview

Equivariant Subgraph Aggregation Networks (ESAN)

This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (ICLR 2022)

Install

First create a conda environment

conda env create -f environment.yml

and activate it.

Prepare the data

Run

python data.py --dataset $DATASET

where $DATASET is one of the following:

  • MUTAG
  • PTC
  • PROTEINS
  • NCI1
  • NCI109
  • IMDB-BINARY
  • IMDB-MULTI
  • ogbg-molhiv
  • ogbg-moltox21
  • ZINC
  • CSL
  • EXP
  • CEXP

Run the models

To perform hyperparameter tuning, make use of wandb:

  1. In configs/ folder, choose the yaml file corresponding to the dataset and setting (deterministic vs sampling) of interest, say . This file contains the hyperparameters grid.

  2. Run

    wandb sweep configs/<config-name>

    to obtain a sweep id

  3. Run the hyperparameter tuning with

    wandb agent <sweep-id>

    You can run the above command multiple times on each machine you would like to contribute to the grid-search

  4. Open your project in your wandb account on the browser to see the results:

    • For the TUDatasets, the CSL and the EXP/CEXP datasets, refer to Metric/valid_mean and Metric/valid_std to obtain the results.

    • For the ogbg datasets and the ZINC dataset, compute mean and std of Metric/train_mean, Metric/valid_mean, Metric/test_mean over the different seeds of the same configuration. Then, take the results corresponding to the configuration obtaining the best validation metric.

Credits

For attribution in academic contexts, please cite

@inproceedings{bevilacqua2022equivariant,
title={Equivariant Subgraph Aggregation Networks},
author={Beatrice Bevilacqua and Fabrizio Frasca and Derek Lim and Balasubramaniam Srinivasan and Chen Cai and Gopinath Balamurugan and Michael M. Bronstein and Haggai Maron},
booktitle={International Conference on Learning Representations},
year={2022},
}
Owner
Beatrice Bevilacqua
Beatrice Bevilacqua
Over-the-Air Ensemble Inference with Model Privacy

Over-the-Air Ensemble Inference with Model Privacy This repository contains simulations for our private ensemble inference method. Installation Instal

Selim Firat Yilmaz 1 Jun 29, 2022
FIRA: Fine-Grained Graph-Based Code Change Representation for Automated Commit Message Generation

FIRA is a learning-based commit message generation approach, which first represents code changes via fine-grained graphs and then learns to generate commit messages automatically.

Van 21 Dec 30, 2022
An unsupervised learning framework for depth and ego-motion estimation from monocular videos

SfMLearner This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghui Zhou, Matthew

Tinghui Zhou 1.8k Dec 30, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
"3D Human Texture Estimation from a Single Image with Transformers", ICCV 2021

Texformer: 3D Human Texture Estimation from a Single Image with Transformers This is the official implementation of "3D Human Texture Estimation from

XiangyuXu 193 Dec 05, 2022
Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods”

Uncertainty Estimation Methods Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods” Reference If you use this code,

EPFL Machine Learning and Optimization Laboratory 4 Apr 05, 2022
Turning SymPy expressions into JAX functions

sympy2jax Turn SymPy expressions into parametrized, differentiable, vectorizable, JAX functions. All SymPy floats become trainable input parameters. S

Miles Cranmer 38 Dec 11, 2022
Data-depth-inference - Data depth inference with python

Welcome! This readme will guide you through the use of the code in this reposito

Marco 3 Feb 08, 2022
Code of paper "Compositionally Generalizable 3D Structure Prediction"

Compositionally Generalizable 3D Structure Prediction In this work, We bring in the concept of compositional generalizability and factorizes the 3D sh

Songfang Han 30 Dec 17, 2022
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

10 Dec 14, 2022
Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

1 Jan 16, 2022
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 05, 2023
JugLab 33 Dec 30, 2022
Delving into Localization Errors for Monocular 3D Object Detection, CVPR'2021

Delving into Localization Errors for Monocular 3D Detection By Xinzhu Ma, Yinmin Zhang, Dan Xu, Dongzhan Zhou, Shuai Yi, Haojie Li, Wanli Ouyang. Intr

XINZHU.MA 124 Jan 04, 2023
Reproduction process of AlexNet

PaddlePaddle论文复现杂谈 背景 注:该repo基于PaddlePaddle,对AlexNet进行复现。时间仓促,难免有所疏漏,如果问题或者想法,欢迎随时提issue一块交流。 飞桨论文复现赛地址:https://aistudio.baidu.com/aistudio/competitio

19 Nov 29, 2022
CondenseNet V2: Sparse Feature Reactivation for Deep Networks

CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y

Haojun Jiang 74 Dec 12, 2022
Out-of-Town Recommendation with Travel Intention Modeling (AAAI2021)

TrainOR_AAAI21 This is the official implementation of our AAAI'21 paper: Haoran Xin, Xinjiang Lu, Tong Xu, Hao Liu, Jingjing Gu, Dejing Dou, Hui Xiong

Jack Xin 13 Oct 19, 2022
An open source object detection toolbox based on PyTorch

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

Bo Chen 24 Dec 28, 2022
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023