Scalable Graph Neural Networks for Heterogeneous Graphs

Related tags

Deep LearningNARS
Overview

Neighbor Averaging over Relation Subgraphs (NARS)

NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor averaging techniques that have been previously used in e.g. SIGN to heterogeneous scenarios by generating neighbor-averaged features on sampled relation induced subgraphs.

For more details, please check out our paper:

Scalable Graph Neural Networks for Heterogeneous Graphs

Setup

Dependencies

  • torch==1.5.1+cu101
  • dgl-cu101==0.4.3.post2
  • ogb==1.2.1
  • dglke==0.1.0

Docker

We have prepared a dockerfile for building a container with clean environment and all required dependencies. Please checkout instructions in docker.

Data Preparation

Download and pre-process OAG dataset (optional)

If you plan to evaluate on OAG dataset, you need to follow instructions in oag_dataset to download and pre-process dataset.

Generate input for featureless node types

In academic graph datasets (ACM, MAG, OAG) in which only paper nodes are associated with input features. NARS featurizes other node types with TransE relational graph embedding pre-trained on the graph structure.

Please follow instructions in graph_embed to generate embeddings for each dataset.

Sample relation subsets

NARS samples Relation Subsets (see our paper for details). Please follow the instructions in sample_relation_subsets to generate these subsets.

Or you may skip this step and use the example subsets that have added to this repository.

Run NARS Experiments

NARS are evaluated on three academic graph datasets to predict publishing venues and fields of papers.

ACM

python3 train.py --dataset acm --use-emb TransE_acm --R 2 \
    --use-relation-subsets sample_relation_subsets/examples/acm \
    --num-hidden 64 --lr 0.003 --dropout 0.7 --eval-every 1 \
    --num-epochs 100 --input-dropout

OGBN-MAG

python3 train.py --dataset mag --use-emb TransE_mag --R 5 \
    --use-relation-subset sample_relation_subsets/examples/mag \
    --eval-batch-size 50000 --num-hidden 512 --lr 0.001 --batch-s 50000 \
    --dropout 0.5 --num-epochs 1000

OAG (venue prediction)

python3 train.py --dataset oag_venue --use-emb TransE_oag_venue --R 3 \
    --use-relation-subsets sample_relation_subsets/examples/oag_venue \
    --eval-batch-size 25000 --num-hidden 256 --lr 0.001 --batch-size 1000 \
    --data-dir oag_dataset --dropout 0.5 --num-epochs 200

OAG (L1-field prediction)

python3 train.py --dataset oag_L1 --use-emb TransE_oag_L1 --R 3 \
    --use-relation-subsets sample_relation_subsets/examples/oag_L1 \
    --eval-batch-size 25000 --num-hidden 256 --lr 0.001 --batch-size 1000 \
    --data-dir oag_dataset --dropout 0.5 --num-epochs 200

Results

Here is a summary of model performance using example relation subsets:

For ACM and OGBN-MAG dataset, the task is to predict paper publishing venue.

Dataset # Params Test Accuracy
ACM 0.40M 0.9305±0.0043
OGBN-MAG 4.13M 0.5240±0.0016

For OAG dataset, there are two different node predictions tasks: predicting venue (single-label) and L1-field (multi-label). And we follow Heterogeneous Graph Transformer to evaluate using NDCG and MRR metrics.

Task # Params NDCG MRR
Venue 2.24M 0.5214±0.0010 0.3434±0.0012
L1-field 1.41M 0.86420.0022 0.8542±0.0019

Run with limited GPU memory

The above commands were tested on Tesla V100 (32 GB) and Tesla T4 (15GB). If your GPU memory isn't enough for handling large graphs, try the following:

  • add --cpu-process to the command to move preprocessing logic to CPU
  • reduce evaluation batch size with --eval-batch-size. The evaluation result won't be affected since model is fixed.
  • reduce training batch with --batch-size

Run NARS with Reduced CPU Memory Footprint

As mentioned in our paper, using a lot of relation subsets may consume too much CPU memory. To reduce CPU memory footprint, we implemented an optimization in train_partial.py which trains part of our feature aggregation weights at a time.

Using OGBN-MAG dataset as an example, the following command randomly picks 3 subsets from all 8 sampled relation subsets and trains their aggregation weights every 10 epochs.

python3 train_partial.py --dataset mag --use-emb TransE_mag --R 5 \
    --use-relation-subsets sample_relation_subsets/examples/mag \
    --eval-batch-size 50000 --num-hidden 512 --lr 0.001 --batch-size 50000 \
    --dropout 0.5 --num-epochs 1000 --sample-size 3 --resample-every 10

Citation

Please cite our paper with:

@article{yu2020scalable,
    title={Scalable Graph Neural Networks for Heterogeneous Graphs},
    author={Yu, Lingfan and Shen, Jiajun and Li, Jinyang and Lerer, Adam},
    journal={arXiv preprint arXiv:2011.09679},
    year={2020}
}

License

NARS is CC-by-NC licensed, as found in the LICENSE file.

Owner
Facebook Research
Facebook Research
Locally cache assets that are normally streamed in POPULATION: ONE

Population One Localizer This is no longer needed as of the build shipped on 03/03/22, thank you bigbox :) Locally cache assets that are normally stre

Ahman Woods 2 Mar 04, 2022
ESL: Event-based Structured Light

ESL: Event-based Structured Light Video (click on the image) This is the code for the 2021 3DV paper ESL: Event-based Structured Light by Manasi Mugli

Robotics and Perception Group 29 Oct 24, 2022
Official implementation of the NeurIPS'21 paper 'Conditional Generation Using Polynomial Expansions'.

Conditional Generation Using Polynomial Expansions Official implementation of the conditional image generation experiments as described on the NeurIPS

Grigoris 4 Aug 07, 2022
Pytorch implementation of TailCalibX : Feature Generation for Long-tail Classification

TailCalibX : Feature Generation for Long-tail Classification by Rahul Vigneswaran, Marc T. Law, Vineeth N. Balasubramanian, Makarand Tapaswi [arXiv] [

Rahul Vigneswaran 34 Jan 02, 2023
Intel® Nervana™ reference deep learning framework committed to best performance on all hardware

DISCONTINUATION OF PROJECT. This project will no longer be maintained by Intel. Intel will not provide or guarantee development of or support for this

Nervana 3.9k Dec 20, 2022
Neural network for stock price prediction

neural_network_for_stock_price_prediction Neural networks for stock price predic

2 Feb 04, 2022
This repository contains code released by Google Research.

This repository contains code released by Google Research.

Google Research 26.6k Dec 31, 2022
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022
Monitora la qualità della ricezione dei segnali radio nelle province siciliane.

FMap-server Monitora la qualità della ricezione dei segnali radio nelle province siciliane. Conversion data Frequency - StationName maps are stored in

Triglie 5 May 24, 2021
LabelImg is a graphical image annotation tool.

LabelImgPlus LabelImg is a graphical image annotation tool. This project is not updated with new functions now. More functions are supported with Labe

lzx1413 200 Dec 20, 2022
Unofficial PyTorch implementation of "RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving" (ECCV 2020)

RTM3D-PyTorch The PyTorch Implementation of the paper: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving (ECCV 2020

Nguyen Mau Dzung 271 Nov 29, 2022
Train Scene Graph Generation for Visual Genome and GQA in PyTorch >= 1.2 with improved zero and few-shot generalization.

Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr

Boris Knyazev 93 Dec 28, 2022
Human Detection - Pedestrian Detection using OpenCV Python

Pedestrian Detection using OpenCV Python Follow us on Instagram for Machine Lear

Hrishikesh Dutta 1 Jan 23, 2022
Starter kit for getting started in the Music Demixing Challenge.

Music Demixing Challenge - Starter Kit 👉 Challenge page This repository is the Music Demixing Challenge Submission template and Starter kit! Clone th

AIcrowd 106 Dec 20, 2022
CNN visualization tool in TensorFlow

tf_cnnvis A blog post describing the library: https://medium.com/@falaktheoptimist/want-to-look-inside-your-cnn-we-have-just-the-right-tool-for-you-ad

InFoCusp 778 Jan 02, 2023
Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

Hector Kohler 0 Mar 30, 2022
Data visualization app for H&M competition in kaggle

handm_data_visualize_app Data visualization app by streamlit for H&M competition in kaggle. competition page: https://www.kaggle.com/competitions/h-an

Kyohei Uto 12 Apr 30, 2022
Official Implement of CVPR 2021 paper “Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

RGBT Crowd Counting Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a L

37 Dec 08, 2022
KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

86 Dec 12, 2022