Object recognition using Azure Custom Vision AI and Azure Functions

Overview

Object recognition using Azure Custom Vision AI and Azure Functions

License: MIT Twitter: elbruno GitHub: elbruno

During the last couple of months, I’ve having fun with my new friends at home: 🐿️ 🐿️ 🐿️ . These little ones, are extremelly funny, and they literally don’t care about the cold 🥶 ❄️ ☃️ .

So, I decided to help them and build an Automatic Feeder using Azure IoT, a Wio Terminal and maybe some more devices. You can check the Azure IoT project here Azure IoT - Squirrel Feeder.

Once the feeder was ready, I decided to add a new feature to the scenario, detecting when a squirrel 🐿️ is nearby the feeder. In this repository I'll share:

  • How to create an object recognition model using Azure Custom Vision.
  • How to export the model to a Docker image format.
  • How to run the model in an Azure Function.

Custom Vision

Azure Custom Vision is an image recognition service that lets you build, deploy, and improve your own image identifier models. An image identifier applies labels (which represent classifications or objects) to images, according to their detected visual characteristics. Unlike the Computer Vision service, Custom Vision allows you to specify your own labels and train custom models to detect them.

The quickstart section contains step-by-step instructions that let you make calls to the service and get results in a short period of time.

You can use the images in the "CustomVision/Train/" directory in this repository to train your model.

Here is the model performing live recognition in action:

Exporting the model to a Docker image

Once the model was trained, you can export it to several formats. We will use a Linux Docker image format for the Azure Function.

The exported model has several files. The following list shows the files that we use in our Azure Function:

  • Dockerfile: the Dockerfile that will be used to build the image
  • app/app.py: the Python code that runs the model
  • app/labels.txt: The labels that the model recognizes
  • app/model.pb: The model definition
  • app/predict.py: the Python code that performs predictions on images

You can check the exported model in the "CustomVision/DockerLinuxExported/" directory in this repository.

Azure Function

Time to code! Let's create a new Azure Function Using Visual Studio Code and the Azure Functions for Visual Studio Code extension.

Changes to __ init __.py

The following code is the final code for the __ init __.py file in the Azure Function.

A couple of notes:

  • The function will receive a POST request with the file bytes in the body.
  • In order to use the predict file, we must import the predict function from the predict.py file using ".predict"
import logging
import azure.functions as func

# Imports for image procesing
import io
from PIL import Image
from flask import Flask, jsonify

# Imports for prediction
from .predict import initialize, predict_image

def main(req: func.HttpRequest) -> func.HttpResponse:
    logging.info('Python HTTP trigger function processed a request.')

    results = "{}"
    try:
        # get and load image from POST
        image_bytes = req.get_body()    
        image = Image.open(io.BytesIO(image_bytes))
        
        # Load and intialize the model and the app context
        app = Flask(__name__)
        initialize()

        with app.app_context():        
            # prefict image and process results in json string format
            results = predict_image(image)
            jsonresult = jsonify(results)
            jsonStr = jsonresult.get_data(as_text=True)
            results = jsonStr

    except Exception as e:
        logging.info(f'exception: {e}')
        pass 

    # return results
    logging.info('Image processed. Results: ' + results)
    return func.HttpResponse(results, status_code=200)

Changes to requirements.txt

The requirements.txt file will define the necessary libraries for the Azure Function. We will use the following libraries:

# DO NOT include azure-functions-worker in this file
# The Python Worker is managed by Azure Functions platform
# Manually managing azure-functions-worker may cause unexpected issues

azure-functions
requests
Pillow
numpy
flask
tensorflow
opencv-python

Sample Code

You can view a sample function completed code in the "AzureFunction/CustomVisionSquirrelDetectorFunction/" directory in this repository.

Testing the sample

Once our code is complete we can test the sample in local mode or in Azure Functions, after we deploy the Function. In both scenarios we can use any tool or language that can perform HTTP POST requests to the Azure Function to test our function.

Test using Curl

Curl is a command line tool that allows you to send HTTP requests to a server. It is a very simple tool that can be used to send HTTP requests to a server. We can test the local function using curl with the following command:

❯ curl http://localhost:7071/api/CustomVisionSquirrelDetectorFunction -Method 'Post' -InFile 01.jpg

Test using Postman

Postman is a great tool to test our function. You can use it to test the function in local mode and also to test the function once it has been deployed to Azure Functions. You can download Postman here.

In order to test our function we need to know the function url. In Visual Studio Code, we can get the url by clicking on the Functions section in the Azure Extension. Then we can right click on the function and select "Copy Function URL".

Now we can go to Postman and create a new POST request using our function url. We can also add the image we want to test. Here is a live demo, with the function running locally, in Debug mode in Visual Studio Code:

We are now ready to test our function in Azure Functions. To do so we need to deploy the function to Azure Functions. And use the new Azure Function url with the same test steps.

Additional Resources

You can check a session recording about this topic in English and Spanish.

These links will help to understand specific implementations of the sample code:

In my personal blog "ElBruno.com", I wrote about several scenarios on how to work and code with Custom Vision.

Author

👤 Bruno Capuano

🤝 Contributing

Contributions, issues and feature requests are welcome!

Feel free to check issues page.

Show your support

Give a ⭐️ if this project helped you!

📝 License

Copyright © 2021 Bruno Capuano.

This project is MIT licensed.


Owner
El Bruno
Sr Cloud Advocate @Microsoft, former Microsoft MVP (14 years!), lazy runner, lazy podcaster, technology enthusiast
El Bruno
ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

Snapdragon Lee 2 Dec 16, 2022
Super Resolution for images using deep learning.

Neural Enhance Example #1 — Old Station: view comparison in 24-bit HD, original photo CC-BY-SA @siv-athens. As seen on TV! What if you could increase

Alex J. Champandard 11.7k Dec 29, 2022
KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

IELab@ Korea University 74 Dec 28, 2022
Code for ICLR2018 paper: Improving GAN Training via Binarized Representation Entropy (BRE) Regularization - Y. Cao · W Ding · Y.C. Lui · R. Huang

code for "Improving GAN Training via Binarized Representation Entropy (BRE) Regularization" (ICLR2018 paper) paper: https://arxiv.org/abs/1805.03644 G

21 Oct 12, 2020
Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Swin-Transformer-Tensorflow A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Sh

52 Dec 29, 2022
Codes for "Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier"

Deep-RTC [project page] This repository contains the source code accompanying our ECCV 2020 paper. Solving Long-tailed Recognition with Deep Realistic

Gina Wu 16 May 26, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

CGTransformer Code for our AAAI 2022 paper "Contrastive-Geometry Transformer network for Generalized 3D Pose Transfer" Contrastive-Geometry Transforme

18 Jun 28, 2022
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
Vision-Language Pre-training for Image Captioning and Question Answering

VLP This repo hosts the source code for our AAAI2020 work Vision-Language Pre-training (VLP). We have released the pre-trained model on Conceptual Cap

Luowei Zhou 373 Jan 03, 2023
Artstation-Artistic-face-HQ Dataset (AAHQ)

Artstation-Artistic-face-HQ Dataset (AAHQ) Artstation-Artistic-face-HQ (AAHQ) is a high-quality image dataset of artistic-face images. It is proposed

onion 105 Dec 16, 2022
[CVPR 2022 Oral] Versatile Multi-Modal Pre-Training for Human-Centric Perception

Versatile Multi-Modal Pre-Training for Human-Centric Perception Fangzhou Hong1  Liang Pan1  Zhongang Cai1,2,3  Ziwei Liu1* 1S-Lab, Nanyang Technologic

Fangzhou Hong 96 Jan 03, 2023
A Python library for Deep Probabilistic Modeling

Abstract DeeProb-kit is a Python library that implements deep probabilistic models such as various kinds of Sum-Product Networks, Normalizing Flows an

DeeProb-org 46 Dec 26, 2022
The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.

SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I

386 Jan 01, 2023
Forecasting with Gradient Boosted Time Series Decomposition

ThymeBoost ThymeBoost combines time series decomposition with gradient boosting to provide a flexible mix-and-match time series framework for spicy fo

131 Jan 08, 2023
The code repository for EMNLP 2021 paper "Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization".

Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization [Paper] accepted at the EMNLP 2021: Vision Guided Genera

CAiRE 42 Jan 07, 2023
Codebase for ECCV18 "The Sound of Pixels"

Sound-of-Pixels Codebase for ECCV18 "The Sound of Pixels". *This repository is under construction, but the core parts are already there. Environment T

Hang Zhao 318 Dec 20, 2022
Python utility to generate filesystem content for Obsidian.

Security Vault Generator Quickly parse, format, and output common frameworks/content for Obsidian.md. There is a strong focus on MITRE ATT&CK because

Justin Angel 73 Dec 02, 2022
A visualisation tool for Deep Reinforcement Learning

DRLVIS - Visualising Deep Reinforcement Learning Created by Marios Sirtmatsis with the support of Alex Bäuerle. DRLVis is an application used for visu

Marios Sirtmatsis 1 Nov 04, 2021
PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric

PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric This repository contains the implementation of MSBG hearing loss m

BUT <a href=[email protected]"> 9 Nov 08, 2022